Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Nov 3;3(4):912-929.
doi: 10.20517/cdr.2020.60. eCollection 2020.

Intracrine androgen biosynthesis and drug resistance

Affiliations
Review

Intracrine androgen biosynthesis and drug resistance

Trevor M Penning et al. Cancer Drug Resist. .

Abstract

Castration-resistant prostate cancer is the lethal form of prostate cancer and most commonly remains dependent on androgen receptor (AR) signaling. Current therapies use AR signaling inhibitors (ARSI) exemplified by abiraterone acetate, a P450c17 inhibitor, and enzalutamide, a potent AR antagonist. However, drug resistance to these agents occurs within 12-18 months and they only prolong overall survival by 3-4 months. Multiple mechanisms can contribute to ARSI drug resistance. These mechanisms can include but are not limited to germline mutations in the AR, post-transcriptional alterations in AR structure, and adaptive expression of genes involved in the intracrine biosynthesis and metabolism of androgens within the tumor. This review focuses on intracrine androgen biosynthesis, how this can contribute to ARSI drug resistance, and therapeutic strategies that can be used to surmount these resistance mechanisms.

Keywords: Prostate cancer; abiraterone acetate; aldo-keto reductase 1C3; androgen biosynthesis; enzalutamide.

PubMed Disclaimer

Conflict of interest statement

Penning TM is Founder Penzymes, LLC, he receives sponsored research funding from Forendo and serves on the Expert Panel for Research Institute for Fragrance Materials. Plymate S is president of ProsTech, Inc. All other authors declared that there are no conflicts of interest.

Figures

Figure 1
Figure 1
Intracrine androgen biosynthesis. Top panel shows reactions that occur in the adrenal reticularis. Bottom panel shows the conversion of adrenal steroids into the potent androgens testosterone and 5α-DHT in human prostate. The classical or canonical pathway is shown in red; the 5α-adione pathway is shown in blue; the backdoor pathway from allopregnanlone is shown in purple; the alternative pathway from 5-androstenediol is also shown. All enzymes are listed in italics by their gene names as follows: AKR1C1, 3α(20α)-hydroxysteroid dehydrogenase; AKR1C2, type 3 3α-hydroysteroid dehydrogenase; AKR1C3, type 5 17β-hydroxysteroid dehydrogenase; CYP17A1, 17α-hydroxylase17/20 lyase; HSD3B1, type 1 3β-hydroxysteroid dehydrogenase; HSD17B2 and 17HSD17B4, type 2 and type 4 17β-hydroxysteroid dehydrogenase; HSD17B6, type 6 17β-hydroxysteroid dehydrogenase and retinol dehydrogenase; and SRD5A1/2, type 1 and type 2 steroid 5α-reductase
Figure 2
Figure 2
Conversion of 11-oxygenated androgens to 11-keto-Testosterone and 11-keto-DHT. The pathway from adrenal 11β-hydroxy-4AD and 11-keto-4AD to 11-keto-testosterone and 11-Keto-DHT, respectively is shown. The enzymes implicated in this conversion in the prostate are shown. All enzymes are listed in italics by their gene names. AKR1C3, type 5 17β-hydroxysteroid dehydrogenase; HSD11B2, type 2 11β-hydroxysteroid dehydrogenase; and SRD5A1/2, type 1 and type 2 steroid 5α-reductase
Figure 3
Figure 3
Mechanisms of drug resistance to androgen receptor signaling inhibitors (ARSI). Following uptake of DHEA-SO4 into the prostate by SLCO transporters a number of enzymes with either increased expression or germline mutations that result in increased activity/stability may contribute to ARSI drug therapy resistance (shown in green); similarly, a number of enzymes with either decreased activity or germline mutations that decrease activity/stability may contribute to drug resistance (shown in red). AKR1C3 may be an exception in that it is highly upregulated by androgen deprivation, and nsSNPs in conserved positions may reduce its activity. All enzymes are listed in italics by their gene names as described in the legends to Figures 1 and 2
Figure 4
Figure 4
Putative Coactivator Domain of AKR1C3. Ribbon diagram of the AKR1C3•NADP+•Indomethacin complex (taken from PDB ID: 3UGB) showing the putative coactivator domain in the enzyme. Protein fold (green); NADP+ stick representation (red); indomethacin stick representation (orange); blue corresponds to amino acids 171-237; the disordered loop that may bind to the N-terminus of the AR (magneta). Cartoon prepared in PyMol

References

    1. Siegel RL, Miller KD, Jermal A. Cancer statistics. CA Cancer J Clin. 2019;69:7–34. doi: 10.3322/caac.21551. - DOI - PubMed
    1. Huggins CB, Hodges CV. Studies on prostatic cancer 1. Effect of castration, estrogen and androgen injection on serum phosphatases in metatstatic carcinoma of the prostate. Cancer Res. 1941;1:293–397.
    1. Huggins CB. Two principles in endocrine therapy of cancers: Hormone deprival and hormone interference. Cancer Res. 1965;25:1163–7. - PubMed
    1. Santen RJ, Demers L, Max DT, et al. Long term effects of administration of a gonadotropin-releasing hormone superagonist analog in men with prostatic carcinoma. J Clin Endocrinol Metab. 1984;58:397–400. doi: 10.1210/jcem-58-2-397. - DOI - PubMed
    1. Seely JH. Phase III studies on prostatic cancer with leuprolide acetate. J Androl. 1987;8:S23–6. - PubMed

LinkOut - more resources