Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Apr 17;3(3):385-400.
doi: 10.20517/cdr.2019.110. eCollection 2020.

MicroRNA and liver cancer

Affiliations
Review

MicroRNA and liver cancer

Masaya Onishi et al. Cancer Drug Resist. .

Abstract

Hepatocellular carcinoma (HCC) is a major cause of cancer-related deaths worldwide. HCC is characterized by a poor prognosis and an ever increasing number of scientific studies aim to find new diagnostic, prognostic, and therapeutic targets. MicroRNAs (miRNAs), small non-coding RNAs that regulate the gene expression in many processes, have been shown to play a crucial role in regulating hepatocellular carcinoma. miRNAs may act as oncogenic miRNAs and tumor suppressor miRNAs and regulate cancer cell proliferation, invasion, and metastasis by being differently upregulated or downregulated and targeting the genes related with carcinogenesis. miRNAs secreted from cancer cells are found circulating in the blood, presenting an opportunity for their use as disease-related biomarkers. Moreover, extracellular vesicle-derived miRNAs are known to reflect the cell of origin and function and may provide effective biomarkers for predicting diagnosis and prognosis and new therapeutic target in HCC. In this article, we describe the most recent findings regarding the molecular mechanisms and gene regulation of microRNA in HCC, as well as their application in diagnosis/prognosis and treatment.

Keywords: MicroRNA; diagnosis; extracellular vesicles; hepatocellular carcinoma.

PubMed Disclaimer

Conflict of interest statement

All authors declared that there are no conflicts of interest.

Figures

Figure 1
Figure 1
Roles of oncomiRs and suppressor miRNAs in carcinogenesis pathways of HCC. Red: oncomiRs; blue: suppressor miRNAs. PTEN: phosphatase and tensin homolog; oncomiRs: oncogenic miRNAs; miRNAs: microRNAs; HCC: hepatocellular carcinoma; PI3K: phosphoinositide 3-kinase; MAPK: mitogen-activated protein kinases; MET: mesenchymal-epithelial transition factor; PAC4: proteasome assembly chaperone 4 ; ERK: extracellular regulated kinase; MDM: mouse double minute; BBC3: Bcl-2-binding component 3; GADD45: growth arrest and DNA-damage-inducible 45 alpha; S6K: ribosomal protein S6 kinase; DDIT4: DNA-damage-inducible transcript 4; mTOR: mechanistic target of rapamycin; SOX7: SRY-box 7; CCND1: Cyclin D1
Figure 2
Figure 2
Summary of miRNAs involved in the development and progression of HCC. HCC: hepatocellular carcinoma

Similar articles

Cited by

References

    1. Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, et al. Global Burden of Disease Cancer Collaboration Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the global burden of disease study. JAMA Oncol. 2019;5:1749–68. doi: 10.1001/jamaoncol.2019.2996. - DOI - PMC - PubMed
    1. Xia F, Wu LL, Lau WY, Huan HB, Wen XD, et al. Adjuvant sorafenib after heptectomy for barcelona clinic liver cancer-stage C hepatocellular carcinoma patients. World J Gastroenterol. 2016;22:5384–92. doi: 10.3748/wjg.v22.i23.5384. - DOI - PMC - PubMed
    1. Matsuura K, Sawai H, Ikeo K, Ogawa S, Iio E, et al. Genome-wide association study identifies TLL1 variant associated with development of hepatocellular carcinoma after eradication of hepatitis C virus infection. Gastroenterology. 2017;152:1383–94. doi: 10.1053/j.gastro.2017.01.041. - DOI - PubMed
    1. Cleary SP, Jeck WR, Zhao X, Chen K, Selitsky SR, et al. Identification of driver genes in hepatocellular carcinoma by exome sequencing. Hepatology. 2013;58:1693–702. doi: 10.1002/hep.26540. - DOI - PMC - PubMed
    1. Kan Z, Zheng H, Liu X, Li S, Barber TD, et al. Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res. 2013;23:1422–33. doi: 10.1101/gr.154492.113. - DOI - PMC - PubMed

LinkOut - more resources