Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jun 19;2(2):256-270.
doi: 10.20517/cdr.2019.004. eCollection 2019.

Pharmacogenetics of thiopurines

Affiliations
Review

Pharmacogenetics of thiopurines

Raffaella Franca et al. Cancer Drug Resist. .

Abstract

Polychemotherapeutic protocols for the treatment of pediatric acute lymphoblastic leukemia (ALL) always include thiopurines. Specific approaches vary in terms of drugs, dosages and combinations. Such therapeutic schemes, including risk-adapted intensity, have been extremely successful for children with ALL who have reached an outstanding 5-year survival of greater than 90% in developed countries. Innovative drugs such as the proteasome inhibitor bortezomib and the bi-specific T cell engager blinatumomab are available to further improve therapeutic outcomes. Nevertheless, daily oral thiopurines remain the backbone maintenance or continuation therapy. Pharmacogenetics allows the personalization of thiopurine therapy in pediatric ALL and clinical guidelines to tailor therapy on the basis of genetic variants in TPMT and NUDT15 genes are already available. Other genes of interest, such as ITPA and PACSIN2, have been implicated in interindividual variability in thiopurines efficacy and adverse effects and need additional research to be implemented in clinical protocols. In this review we will discuss current literature and clinical guidelines available to implement pharmacogenetics for tailoring therapy with thiopurines in pediatric ALL.

Keywords: NUDT15; PACSIN2; Thiopurines; acute lymphoblastic leukemia; inosine triphosphate pyrophosphatase; pharmacogenetics clinical implementation; therapy personalization; thiopurine methyltransferase.

PubMed Disclaimer

Conflict of interest statement

All authors declared that there are no conflicts of interest.

Figures

Figure 1
Figure 1
Thiopurines chemical structure. A: thioguanine; B: mercaptopurine; C: azathioprine
Figure 2
Figure 2
Thiopurine pathway. MP: mercaptopurine; MMP: methyl-mercaptopurine; TIMP: thioinosine monophosphate; Me-TIMP: methyl-thioinosine monophosphate; TGDP: thioguanine diphosphate; TGMP: thioguanine monophosphate; TGTP: thioguanine triphosphate; TITP: thioinosinetriphosphate; Me-TITP: methylthioinosinetriphosphate; TGN: thioguanine nucleotide; TU acid: thiouric acid; TXMP: thioxantine monophosphate; AZA: azathioprine; IMPDH: Inosine-5′-monophosphate dehydrogenase; ITPA: inosine triphosphate pyrophosphatase; GMPS: GMP synthase; GST: glutathione-transferase; NUDT15: nucleotide triphosphate diphosphatase gene; PACSIN2: Protein kinase C and casein kinase substrate in neurons protein 2; TPMT: thiopurine methyltransferase; XO: xanthine oxidase. Hatched arrow indicates the infleunce of PACSIN2 on TPMT gene expression and TPMT activity

References

    1. Adamson PC, Poplack DG, Balis FM. The cytotoxicity of thioguanine vs mercaptopurine in acute lymphoblastic leukemia. Leuk Res. 1994;18:805–10. doi: 10.1016/0145-2126(94)90159-7. - DOI - PubMed
    1. Lucafò M, Franca R, Selvestrel D, Curci D, Pugnetti L, et al. Pharmacogenetics of treatments for inflammatory bowel disease. Expert Opin Drug Metab Toxicol. 2018;14:1209–23. doi: 10.1080/17425255.2018.1551876. - DOI - PubMed
    1. Cara CJ, Pena AS, Sans M, Rodrigo L, Guerrero-Esteo M, et al. Reviewing the mechanism of action of thiopurine drugs: towards a new paradigm in clinical practice. Med Sci Monit. 2004;10:RA247–54. - PubMed
    1. Berends SE, Strik AS, Löwenberg M, D’Haens GR, Mathôt RAA. Clinical pharmacokinetic and pharmacodynamic considerations in the treatment of ulcerative colitis. Clin Pharmacokinet. 2019;58:15–37. doi: 10.1007/s40262-018-0676-z. - DOI - PMC - PubMed
    1. Krenitsky TA, Papaioannou R, Elion GB. Human hypoxanthine phosphoribosyltransferase. I. Purification, properties, and specificity. J Biol Chem. 1969;244:1263–70. - PubMed

LinkOut - more resources