What Are Risk Factors for and Outcomes of Late Amputation After Treatment for Lower Extremity Sarcoma: A Childhood Cancer Survivor Study Report
- PMID: 35583517
- PMCID: PMC9928620
- DOI: 10.1097/CORR.0000000000002243
What Are Risk Factors for and Outcomes of Late Amputation After Treatment for Lower Extremity Sarcoma: A Childhood Cancer Survivor Study Report
Abstract
Background: Although pediatric lower extremity sarcoma once was routinely treated with amputation, multiagent chemotherapy as well as the evolution of tumor resection and reconstruction techniques have enabled the wide adoption of limb salvage surgery (LSS). Even though infection and tumor recurrence are established risk factors for early amputation (< 5 years) after LSS, the frequency of and factors associated with late amputation (≥ 5 years from diagnosis) in children with sarcomas are not known. Additionally, the resulting psychosocial and physical outcomes of these patients compared with those treated with primary amputation or LSS that was not complicated by subsequent amputation are not well studied. Studying these outcomes is critical to enhancing the quality of life of patients with sarcomas.
Questions/purposes: (1) How have treatments changed over time in patients with lower extremity sarcoma who are included in the Childhood Cancer Survivor Study (CCSS), and did primary treatment with amputation or LSS affect overall survival at 25 years among patients who had survived at least 5 years from diagnosis? (2) What is the cumulative incidence of amputation after LSS for patients diagnosed with pediatric lower extremity sarcomas 25 years after diagnosis? (3) What are the factors associated with time to late amputation (≥ 5 years after diagnosis) in patients initially treated with LSS for lower extremity sarcomas in the CCSS? (4) What are the comparative social, physical, and emotional health-related quality of life (HRQOL) outcomes among patients with sarcoma treated with primary amputation, LSS without amputation, or LSS complicated by late amputation, as assessed by CCSS follow-up questionnaires, the SF-36, and the Brief Symptom Inventory-18 at 20 years after cancer diagnosis?
Methods: The CCSS is a long-term follow-up study that began in 1994 and is coordinated through St. Jude Children's Research Hospital. It is a retrospective study with longitudinal follow-up of more than 38,000 participants treated for childhood cancer when younger than 21 years at one of 31 collaborating institutions between 1970 and 1999 in the United States and Canada. Participants were eligible for enrollment in the CCSS after they had survived 5 years from diagnosis. Within the CCSS cohort, we included participants who had a diagnosis of lower extremity sarcoma treated with primary amputation (547 patients with a mean age at diagnosis of 13 ± 4 years) or primary LSS (510 patients with a mean age 14 ± 4 years). The LSS cohort was subdivided into LSS without amputation, defined as primary LSS without amputation at the time of latest follow-up; LSS with early amputation, defined as LSS complicated by amputation occurring less than 5 years from diagnosis; or LSS with late amputation, defined as primary LSS in study patients who subsequently underwent amputation 5 years or more from cancer diagnosis. The cumulative incidence of late amputation after primary LSS was estimated. Cox proportional hazards regression with time-varying covariates identified factors associated with late amputation. Modified Poisson regression models were used to compare psychosocial, physical, and HRQOL outcomes among patients treated with primary amputation, LSS without amputation, or LSS complicated by late amputation using validated surveys.
Results: More study participants were treated with LSS than with primary amputation in more recent decades. The overall survival at 25 years in this population who survived 5 years from diagnosis was not different between those treated with primary amputation (87% [95% confidence interval [CI] 82% to 91%]) compared with LSS (88% [95% CI 85% to 91%]; p = 0.31). The cumulative incidence of amputation at 25 years after cancer diagnosis and primary LSS was 18% (95% CI 14% to 21%). With the numbers available, the cumulative incidence of late amputation was not different among study patients treated in the 1970s (27% [95% CI 15% to 38%]) versus the 1980s and 1990s (19% [95% CI 13% to 25%] and 15% [95% CI 10% to 19%], respectively; p = 0.15). After controlling for gender, medical and surgical treatment variables, cancer recurrence, and chronic health conditions, gender (hazard ratio [HR] 2.02 [95% CI 1.07 to 3.82]; p = 0.03) and history of prosthetic joint reconstruction (HR 2.58 [95% CI 1.37 to 4.84]; p = 0.003) were associated with an increased likelihood of late amputation. Study patients treated with a primary amputation (relative risk [RR] 2.04 [95% CI 1.15 to 3.64]) and LSS complicated by late amputation (relative risk [RR] 3.85 [95% CI 1.66 to 8.92]) were more likely to be unemployed or unable to attend school than patients treated with LSS without amputation to date. The CCSS cohort treated with primary amputation and those with LSS complicated by late amputation reported worse physical health scores than those without amputation to date, although mental and emotional health outcomes did not differ between the groups.
Conclusion: There is a substantial risk of late amputation after LSS, and both primary and late amputation status are associated with decreased physical HRQOL outcomes. Children treated for sarcoma who survive into adulthood after primary amputation and those who undergo late amputation after LSS may benefit from interventions focused on improving physical function and reaching educational and employment milestones. Efforts to improve the physical function of people who have undergone amputation either through prosthetic design or integration into the residuum should be supported. Understanding factors associated with late amputation in the setting of more modern surgical approaches and implants will help surgeons more effectively manage patient expectations and adjust practice to mitigate these risks over the life of the patient.
Level of evidence: Level III, therapeutic study.
Copyright © 2022 by the Association of Bone and Joint Surgeons.
Conflict of interest statement
Each author certifies that there are no funding or commercial associations (consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article related to the author or any immediate family members. All ICMJE Conflict of Interest Forms for authors and Clinical Orthopaedics and Related Research® editors and board members are on file with the publication and can be viewed on request.
Figures
Comment in
-
CORR Insights®: What Are Risk Factors for and Outcomes of Late Amputation After Treatment for Lower Extremity Sarcoma: A Childhood Cancer Survivor Study Report.Clin Orthop Relat Res. 2023 Mar 1;481(3):539-541. doi: 10.1097/CORR.0000000000002316. Epub 2022 Aug 15. Clin Orthop Relat Res. 2023. PMID: 35969511 Free PMC article. No abstract available.
Similar articles
-
Cumulative burden of late, major surgical intervention in survivors of childhood cancer: a report from the Childhood Cancer Survivor Study (CCSS) cohort.Lancet Oncol. 2023 Jun;24(6):691-700. doi: 10.1016/S1470-2045(23)00154-7. Epub 2023 May 11. Lancet Oncol. 2023. PMID: 37182536 Free PMC article.
-
Is High-dose Radiation Therapy Associated With Early Revision Due to Aseptic Loosening in Patients With a Sarcoma of the Lower Extremities Reconstructed With a Cemented Endoprosthesis?Clin Orthop Relat Res. 2023 Mar 1;481(3):475-487. doi: 10.1097/CORR.0000000000002360. Epub 2022 Aug 17. Clin Orthop Relat Res. 2023. PMID: 35977001 Free PMC article.
-
Is There an Association Between Insurance Status and Survival and Treatment of Primary Bone and Extremity Soft-tissue Sarcomas? A SEER Database Study.Clin Orthop Relat Res. 2020 Mar;478(3):527-536. doi: 10.1097/CORR.0000000000000889. Clin Orthop Relat Res. 2020. PMID: 31390340 Free PMC article.
-
Late mortality among 5-year survivors of childhood cancer: a summary from the Childhood Cancer Survivor Study.J Clin Oncol. 2009 May 10;27(14):2328-38. doi: 10.1200/JCO.2008.21.1425. Epub 2009 Mar 30. J Clin Oncol. 2009. PMID: 19332714 Free PMC article. Review.
-
Limb-salvage surgery offers better five-year survival rate than amputation in patients with limb osteosarcoma treated with neoadjuvant chemotherapy. A systematic review and meta-analysis.J Bone Oncol. 2020 Sep 15;25:100319. doi: 10.1016/j.jbo.2020.100319. eCollection 2020 Dec. J Bone Oncol. 2020. PMID: 33088699 Free PMC article. Review.
Cited by
-
Can Periprosthetic Joint Infection of Tumor Prostheses Be Controlled With Debridement, Antibiotics, and Implant Retention?Clin Orthop Relat Res. 2025 Jan 1;483(1):49-58. doi: 10.1097/CORR.0000000000003184. Epub 2024 Jul 8. Clin Orthop Relat Res. 2025. PMID: 38991232
-
Cumulative burden of late, major surgical intervention in survivors of childhood cancer: a report from the Childhood Cancer Survivor Study (CCSS) cohort.Lancet Oncol. 2023 Jun;24(6):691-700. doi: 10.1016/S1470-2045(23)00154-7. Epub 2023 May 11. Lancet Oncol. 2023. PMID: 37182536 Free PMC article.
-
Limb Amputations in Cancer: Modern Perspectives, Outcomes, and Alternatives.Curr Oncol Rep. 2023 Dec;25(12):1457-1465. doi: 10.1007/s11912-023-01475-5. Epub 2023 Nov 24. Curr Oncol Rep. 2023. PMID: 37999825 Review.
-
Long-term outcomes among survivors of childhood osteosarcoma: A report from the Childhood Cancer Survivor Study (CCSS).Pediatr Blood Cancer. 2024 Oct;71(10):e31189. doi: 10.1002/pbc.31189. Epub 2024 Jul 15. Pediatr Blood Cancer. 2024. PMID: 39010279
References
-
- Aksnes LH, Bauer HC, Jebsen NL, et al. Limb-sparing surgery preserves more function than amputation: a Scandinavian sarcoma group study of 118 participants. J Bone Joint Surg Br. 2008;90:786-794. - PubMed
-
- Burger H, Marincek C. Return to work after lower limb amputation. Disabil Rehabil. 2007;29:1323-1329. - PubMed