Evaluation of Machine Learning Models for Clinical Prediction Problems
- PMID: 35583620
- PMCID: PMC9177058
- DOI: 10.1097/PCC.0000000000002942
Evaluation of Machine Learning Models for Clinical Prediction Problems
Conflict of interest statement
Dr. Bennett’s institution received funding from the National Institute of Child Health and Human Development, the National Center for Advancing Translational Sciences, and the National Heart, Lung, and Blood Institute; he received support for article research from the National Institutes of Health. Dr. Sanchez-Pinto has disclosed that he does not have any potential conflicts of interest.
Comment on
-
Dynamic Mortality Risk Predictions for Children in ICUs: Development and Validation of Machine Learning Models.Pediatr Crit Care Med. 2022 May 1;23(5):344-352. doi: 10.1097/PCC.0000000000002910. Epub 2022 May 5. Pediatr Crit Care Med. 2022. PMID: 35190501 Free PMC article.
Similar articles
-
A Novel Diabetes Healthcare Disease Prediction Framework Using Machine Learning Techniques.J Healthc Eng. 2022 Jan 11;2022:1684017. doi: 10.1155/2022/1684017. eCollection 2022. J Healthc Eng. 2022. Retraction in: J Healthc Eng. 2023 May 24;2023:9872970. doi: 10.1155/2023/9872970. PMID: 35070225 Free PMC article. Retracted. Review.
-
Machine Learning-Based Prediction Models for Different Clinical Risks in Different Hospitals: Evaluation of Live Performance.J Med Internet Res. 2022 Jun 7;24(6):e34295. doi: 10.2196/34295. J Med Internet Res. 2022. PMID: 35502887 Free PMC article.
-
Machine Learning-based Prediction Models for Diagnosis and Prognosis in Inflammatory Bowel Diseases: A Systematic Review.J Crohns Colitis. 2022 Mar 14;16(3):398-413. doi: 10.1093/ecco-jcc/jjab155. J Crohns Colitis. 2022. PMID: 34492100 Free PMC article.
-
Tell me something interesting: Clinical utility of machine learning prediction models in the ICU.J Biomed Inform. 2022 Aug;132:104107. doi: 10.1016/j.jbi.2022.104107. Epub 2022 Jun 7. J Biomed Inform. 2022. PMID: 35688332
-
[Comparison of machine learning method and logistic regression model in prediction of acute kidney injury in severely burned patients].Zhonghua Shao Shang Za Zhi. 2018 Jun 20;34(6):343-348. doi: 10.3760/cma.j.issn.1009-2587.2018.06.006. Zhonghua Shao Shang Za Zhi. 2018. PMID: 29961290 Chinese.
Cited by
-
Signatures of illness in children requiring unplanned intubation in the pediatric intensive care unit: A retrospective cohort machine-learning study.Front Pediatr. 2022 Oct 19;10:1016269. doi: 10.3389/fped.2022.1016269. eCollection 2022. Front Pediatr. 2022. PMID: 36440325 Free PMC article.
-
Novel approaches to capturing and using continuous cardiorespiratory physiological data in hospitalized children.Pediatr Res. 2023 Jan;93(2):396-404. doi: 10.1038/s41390-022-02359-3. Epub 2022 Nov 3. Pediatr Res. 2023. PMID: 36329224 Review.
-
Phoenix Sepsis Criteria in Critically Ill Children: Retrospective Validation Using a United States Nine-Center Dataset, 2012-2018.Pediatr Crit Care Med. 2025 Feb 1;26(2):e155-e165. doi: 10.1097/PCC.0000000000003675. Epub 2025 Feb 6. Pediatr Crit Care Med. 2025. PMID: 39982153 Free PMC article.
-
Navigating Complexity: Enhancing Pediatric Diagnostics With Large Language Models.Pediatr Crit Care Med. 2024 Jun 1;25(6):577-580. doi: 10.1097/PCC.0000000000003483. Epub 2024 Jun 5. Pediatr Crit Care Med. 2024. PMID: 38836714 Free PMC article. No abstract available.
-
Development and Temporal Validation of a Machine Learning Model to Predict Clinical Deterioration.Hosp Pediatr. 2024 Jan 1;14(1):11-20. doi: 10.1542/hpeds.2023-007308. Hosp Pediatr. 2024. PMID: 38053467 Free PMC article.
References
-
- Légaré F, Stacey D, Turcotte S, Cossi MJ, Kryworuchko J, Graham ID, et al. Interventions for improving the adoption of shared decision making by healthcare professionals. Cochrane database of systematic reviews. 2014(9). - PubMed
-
- Jacobsen M, O’Connor A. Population needs assessment: A workbook for assessing patients’ and practitioners’ decision making needs. Ottawa: University of Ottawa. 2006.
-
- Bennett TD, Marsh R, Maertens JA, Rutebemberwa A, Morris MA, Hankinson TC, et al. Decision-making about intracranial pressure monitor placement in children with traumatic brain injury. Pediatr Crit Care Med. 2019;20(7):645–51. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources