4D marine conservation networks: Combining 3D prioritization of present and future biodiversity with climatic refugia
- PMID: 35583810
- DOI: 10.1111/gcb.16268
4D marine conservation networks: Combining 3D prioritization of present and future biodiversity with climatic refugia
Abstract
Given the accelerating rate of biodiversity loss, the need to prioritize marine areas for protection represents a major conservation challenge. The three-dimensionality of marine life and ecosystems is an inherent element of complexity for setting spatial conservation plans. Yet, the confidence of any recommendation largely depends on shifting climate, which triggers a global redistribution of biodiversity, suggesting the inclusion of time as a fourth dimension. Here, we developed a depth-specific prioritization analysis to inform the design of protected areas, further including metrics of climate-driven changes in the ocean. Climate change was captured in this analysis by considering the projected future distribution of >2000 benthic and pelagic species inhabiting the Mediterranean Sea, combined with climatic stability and heterogeneity metrics of the seascape. We identified important areas based on both biological and climatic criteria, where conservation focus should be given in priority when designing a three-dimensional, climate-smart protected area network. We detected spatially concise, conservation priority areas, distributed around the basin, that protected marine areas almost equally across all depth zones. Our approach highlights the importance of deep sea zones as priority areas to meet conservation targets for future marine biodiversity, while suggesting that spatial prioritization schemes, that focus on a static two-dimensional distribution of biodiversity data, might fail to englobe both the vertical properties of species distributions and the fine and larger-scale impacts associated with climate change.
Keywords: climate analogs; climate change refugia; climate-smart networks; systematic conservation planning; vertical connectivity.
© 2022 John Wiley & Sons Ltd.
Similar articles
-
Spatial heterogeneity and temporal stability characterize future climatic refugia in Mediterranean Europe.Glob Chang Biol. 2022 Apr;28(7):2413-2424. doi: 10.1111/gcb.16072. Epub 2022 Jan 12. Glob Chang Biol. 2022. PMID: 34981617
-
Riparian areas as a conservation priority under climate change.Sci Total Environ. 2023 Feb 1;858(Pt 2):159879. doi: 10.1016/j.scitotenv.2022.159879. Epub 2022 Nov 2. Sci Total Environ. 2023. PMID: 36334670
-
Scale-dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change.Glob Chang Biol. 2017 Nov;23(11):4508-4520. doi: 10.1111/gcb.13679. Epub 2017 Mar 31. Glob Chang Biol. 2017. PMID: 28267245
-
Incorporating climate change adaptation into marine protected area planning.Glob Chang Biol. 2020 Jun;26(6):3251-3267. doi: 10.1111/gcb.15094. Epub 2020 Apr 19. Glob Chang Biol. 2020. PMID: 32222010 Review.
-
Maximizing the effectiveness of national commitments to protected area expansion for conserving biodiversity and ecosystem carbon under climate change.Glob Chang Biol. 2021 Aug;27(15):3395-3414. doi: 10.1111/gcb.15645. Epub 2021 May 10. Glob Chang Biol. 2021. PMID: 33852186 Free PMC article. Review.
Cited by
-
Five ways seascape ecology can help to achieve marine restoration goals.Landsc Ecol. 2025;40(6):115. doi: 10.1007/s10980-025-02099-9. Epub 2025 Jun 4. Landsc Ecol. 2025. PMID: 40475222 Free PMC article. Review.
-
3D ocean assessments reveal that fisheries reach deep but marine protection remains shallow.Nat Commun. 2024 May 21;15(1):4027. doi: 10.1038/s41467-024-47975-1. Nat Commun. 2024. PMID: 38773096 Free PMC article.
-
Three-dimensional conservation planning of fish biodiversity metrics to achieve the deep-sea 30×30 conservation target.Conserv Biol. 2025 Apr;39(2):e14368. doi: 10.1111/cobi.14368. Epub 2024 Sep 3. Conserv Biol. 2025. PMID: 39225250 Free PMC article.
-
Thermal vulnerability of sea turtle foraging grounds around the globe.Commun Biol. 2024 Mar 21;7(1):347. doi: 10.1038/s42003-024-06013-y. Commun Biol. 2024. PMID: 38514821 Free PMC article.
References
REFERENCES
-
- Abdulla, A., Gomei, M., Hyrenbach, D., Notarbartolo-di-Sciara, G., & Agardy, T. (2009). Challenges facing a network of representative marine protected areas in the Mediterranean: Prioritizing the protection of underrepresented habitats. ICES Journal of Marine Science, 66, 22-28.
-
- Assis, J., Tyberghein, L., Bosh, S., Verbruggen, H., Serrão, E. A., & De Clerck, O. (2017). Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 27, 277-284.
-
- Bennett, S., Duarte, C. M., Marbà, N., & Wernberg, T. (2019). Integrating within-species variation in thermal physiology into climate change ecology. Philosophical Transactions of the Royal Society B, 374(1778), 20180550.
-
- Bevilacqua, S., Airoldi, L., Ballesteros, E., Benedetti-Cecchi, L., Boero, F., Bulleri, F., Cebrian, E., Cerrano, C., Claudet, J., Colloca, F., Coppari, M., Di Franco, A., Fraschetti, S., Garrabou, J., Guarnieri, G., Guerranti, C., Guidetti, P., Halpern, B. S., Katsanevakis, S., … Terlizzi, A. (2021). Mediterranean rocky reefs in the Anthropocene: Present status and future concerns. Advances in Marine Biology, 89, 1-51.
-
- Briscoe, N. J., Kearney, M. R., Taylor, C. A., & Wintle, B. A. (2016). Unpacking the mechanisms captured by a correlative species distribution model to improve predictions of climate refugia. Global Change Biology, 22(7), 2425-2439.
MeSH terms
LinkOut - more resources
Full Text Sources