Hydration-mediated G-protein-coupled receptor activation
- PMID: 35584119
- PMCID: PMC9173805
- DOI: 10.1073/pnas.2117349119
Hydration-mediated G-protein-coupled receptor activation
Abstract
The Rhodopsin family of G-protein–coupled receptors (GPCRs) comprises the targets of nearly a third of all pharmaceuticals. Despite structural water present in GPCR X-ray structures, the physiological relevance of these solvent molecules to rhodopsin signaling remains unknown. Here, we show experimental results consistent with the idea that rhodopsin activation in lipid membranes is coupled to bulk water movements into the protein. To quantify hydration changes, we measured reversible shifting of the metarhodopsin equilibrium due to osmotic stress using an extensive series of polyethylene glycol (PEG) osmolytes. We discovered clear evidence that light activation entails a large influx of bulk water (∼80–100 molecules) into the protein, giving insight into GPCR activation mechanisms. Various size polymer osmolytes directly control rhodopsin activation, in which large solutes are excluded from rhodopsin and dehydrate the protein, favoring the inactive state. In contrast, small osmolytes initially forward shift the activation equilibrium until a quantifiable saturation point is reached, similar to gain-of-function protein mutations. For the limit of increasing osmolyte size, a universal response of rhodopsin to osmotic stress is observed, suggesting it adopts a dynamic, hydrated sponge-like state upon photoactivation. Our results demand a rethinking of the role of water dynamics in modulating various intermediates in the GPCR energy landscape. We propose that besides bound water, an influx of bulk water plays a necessary role in establishing the active GPCR conformation that mediates signaling.
Keywords: GPCR; osmotic stress; rhodopsin; sponge model; structural water.
Conflict of interest statement
The authors declare no competing interest.
Figures




Similar articles
-
Osmotic stress studies of G-protein-coupled receptor rhodopsin activation.Biophys Chem. 2024 Jan;304:107112. doi: 10.1016/j.bpc.2023.107112. Epub 2023 Sep 26. Biophys Chem. 2024. PMID: 37952496
-
Activation of the G-Protein-Coupled Receptor Rhodopsin by Water.Angew Chem Int Ed Engl. 2021 Feb 1;60(5):2288-2295. doi: 10.1002/anie.202003342. Epub 2020 Nov 27. Angew Chem Int Ed Engl. 2021. PMID: 32596956
-
Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.J Mol Biol. 2008 Oct 3;382(2):539-55. doi: 10.1016/j.jmb.2008.06.084. Epub 2008 Jul 7. J Mol Biol. 2008. PMID: 18638482
-
Relevance of rhodopsin studies for GPCR activation.Biochim Biophys Acta. 2014 May;1837(5):674-82. doi: 10.1016/j.bbabio.2013.09.002. Epub 2013 Sep 13. Biochim Biophys Acta. 2014. PMID: 24041646 Review.
-
Structure and activation of rhodopsin.Acta Pharmacol Sin. 2012 Mar;33(3):291-9. doi: 10.1038/aps.2011.171. Epub 2012 Jan 23. Acta Pharmacol Sin. 2012. PMID: 22266727 Free PMC article. Review.
Cited by
-
Hidden water's influence on rhodopsin activation.Biophys J. 2024 Dec 17;123(24):4167-4179. doi: 10.1016/j.bpj.2024.11.012. Epub 2024 Nov 16. Biophys J. 2024. PMID: 39550612 Review.
-
Influence of the Water Model on the Structure and Interactions of the GPR40 Protein with the Lipid Membrane and the Solvent: Rigid versus Flexible Water Models.J Chem Theory Comput. 2024 Jul 23;20(14):6369-6387. doi: 10.1021/acs.jctc.4c00571. Epub 2024 Jul 11. J Chem Theory Comput. 2024. PMID: 38991114 Free PMC article.
-
Protons taken hostage: Dynamic H-bond networks of the pH-sensing GPR68.Comput Struct Biotechnol J. 2023 Sep 2;21:4370-4384. doi: 10.1016/j.csbj.2023.08.034. eCollection 2023. Comput Struct Biotechnol J. 2023. PMID: 37711190 Free PMC article.
-
Mechanistic basis of GPCR activation explored by ensemble refinement of crystallographic structures.Protein Sci. 2022 Nov;31(11):e4456. doi: 10.1002/pro.4456. Protein Sci. 2022. PMID: 36134696 Free PMC article.
-
Membrane Mimetic-Dependence of GPCR Energy Landscapes.bioRxiv [Preprint]. 2023 Oct 19:2023.10.16.562552. doi: 10.1101/2023.10.16.562552. bioRxiv. 2023. Update in: Structure. 2024 May 2;32(5):523-535.e5. doi: 10.1016/j.str.2024.01.013. PMID: 37905159 Free PMC article. Updated. Preprint.
References
-
- Latorraca N. R., Venkatakrishnan A. J., Dror R. O., GPCR dynamics: Structures in motion. Chem. Rev. 117, 139–155 (2017). - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources