S-adenosyl methionine requiring mutants in Saccharomyces cerevisiae: evidences for the existence of two methionine adenosyl transferases
- PMID: 355845
- DOI: 10.1007/BF00267406
S-adenosyl methionine requiring mutants in Saccharomyces cerevisiae: evidences for the existence of two methionine adenosyl transferases
Abstract
Mutants requiring S-adenosyl methionine (SAM) for growth have been selected in Saccharomyces cerevisiae. Two classes of mutants have been found. One class corresponds to the simultaneous occurrence of mutations at two unlinked loci SAM1 and SAM2 and presents a strict SAM requirement for growth on any medium. The second class corresponds to special single mutations in the gene SAM2 which lead to a residual growth on minimal medium but to normal growth on SAM supplemented medium or on a complex medium like YPGA not containing any SAM. These genetic data can be taken as an indication that Saccharomyces cerevisiae possesses two isoenzymatic methionine adenosyl transferases (MAT). In addition, SAM1 and SAM2 loci have been identified respectively with the ETH-10 and ETH2 loci previously described. Biochemical evidences corroborate the genetic results. Two MAT activities can be dissociated in a wild type extract (MATI and MATII) by DEAE cellulose chromatography. Mutations at the SAM1 locus lead to the absence or to the modification of MATII whereas mutations at the SAM2 locus lead to the absence or to the modification of MATI. Moreover, some of our results seem to show that MATI and MATII are associated in vivo.
Similar articles
-
The two methionine adenosyl transferases in Saccharomyces cerevisiae: evidence for the existence of dimeric enzymes.Mol Gen Genet. 1981;182(1):65-9. doi: 10.1007/BF00422768. Mol Gen Genet. 1981. PMID: 7022138
-
SAM2 encodes the second methionine S-adenosyl transferase in Saccharomyces cerevisiae: physiology and regulation of both enzymes.Mol Cell Biol. 1988 Dec;8(12):5132-9. doi: 10.1128/mcb.8.12.5132-5139.1988. Mol Cell Biol. 1988. PMID: 3072475 Free PMC article.
-
Improving methionine and ATP availability by MET6 and SAM2 co-expression combined with sodium citrate feeding enhanced SAM accumulation in Saccharomyces cerevisiae.World J Microbiol Biotechnol. 2016 Apr;32(4):56. doi: 10.1007/s11274-016-2010-y. Epub 2016 Feb 29. World J Microbiol Biotechnol. 2016. PMID: 26925618
-
Pleiotropic effects of methionine adenosyltransferases deregulation as determinants of liver cancer progression and prognosis.J Hepatol. 2013 Oct;59(4):830-41. doi: 10.1016/j.jhep.2013.04.031. Epub 2013 May 7. J Hepatol. 2013. PMID: 23665184 Review.
-
Genetic modification and bioprocess optimization for S-Adenosyl-L-methionine biosynthesis.Subcell Biochem. 2012;64:327-41. doi: 10.1007/978-94-007-5055-5_16. Subcell Biochem. 2012. PMID: 23080258 Review.
Cited by
-
Metabolic functions of duplicate genes in Saccharomyces cerevisiae.Genome Res. 2005 Oct;15(10):1421-30. doi: 10.1101/gr.3992505. Genome Res. 2005. PMID: 16204195 Free PMC article.
-
Lack of S-adenosylmethionine results in a cell division defect in Escherichia coli.J Bacteriol. 1998 Jul;180(14):3614-9. doi: 10.1128/JB.180.14.3614-3619.1998. J Bacteriol. 1998. PMID: 9658005 Free PMC article.
-
The synthesis of the two S-adenosyl-methionine synthetases is differently regulated in Saccharomyces cerevisiae.Mol Gen Genet. 1991 Apr;226(1-2):224-32. doi: 10.1007/BF00273607. Mol Gen Genet. 1991. PMID: 1903502
-
Development of bottom-fermenting saccharomyces strains that produce high SO2 levels, using integrated metabolome and transcriptome analysis.Appl Environ Microbiol. 2008 May;74(9):2787-96. doi: 10.1128/AEM.01781-07. Epub 2008 Feb 29. Appl Environ Microbiol. 2008. PMID: 18310411 Free PMC article.
-
Regulation of s-amino acids biosynthesis in Saccharomycopsis lipolytica.Mol Gen Genet. 1979 Jul 2;174(1):33-8. doi: 10.1007/BF00433302. Mol Gen Genet. 1979. PMID: 289901
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases