Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May;605(7910):470-476.
doi: 10.1038/s41586-022-04568-6. Epub 2022 May 18.

Programmable heating and quenching for efficient thermochemical synthesis

Affiliations

Programmable heating and quenching for efficient thermochemical synthesis

Qi Dong et al. Nature. 2022 May.

Abstract

Conventional thermochemical syntheses by continuous heating under near-equilibrium conditions face critical challenges in improving the synthesis rate, selectivity, catalyst stability and energy efficiency, owing to the lack of temporal control over the reaction temperature and time, and thus the reaction pathways1-3. As an alternative, we present a non-equilibrium, continuous synthesis technique that uses pulsed heating and quenching (for example, 0.02 s on, 1.08 s off) using a programmable electric current to rapidly switch the reaction between high (for example, up to 2,400 K) and low temperatures. The rapid quenching ensures high selectivity and good catalyst stability, as well as lowers the average temperature to reduce the energy cost. Using CH4 pyrolysis as a model reaction, our programmable heating and quenching technique leads to high selectivity to value-added C2 products (>75% versus <35% by the conventional non-catalytic method and versus <60% by most conventional methods using optimized catalysts). Our technique can be extended to a range of thermochemical reactions, such as NH3 synthesis, for which we achieve a stable and high synthesis rate of about 6,000 μmol gFe-1 h-1 at ambient pressure for >100 h using a non-optimized catalyst. This study establishes a new model towards highly efficient non-equilibrium thermochemical synthesis.

PubMed Disclaimer

References

    1. Bailey, J. E. Periodic operation of chemical reactors: a review. Chem. Eng. Commun. 1, 111–124 (1973). - DOI
    1. Wolff, J., Papathanasiou, A. G., Kevrekidis, I. G., Rotermund, H. H. & Ertl, G. Spatiotemporal addressing of surface activity. Science 294, 134–137 (2001). - DOI
    1. Kevrekidis, I. G., Schmidt, L. D. & Aris, R. Some common features of periodically forced reacting systems. Chem. Eng. Sci. 41, 1263–1276 (1986). - DOI
    1. Chorkendorff, I. & Niemantsverdriet, J. W. Concepts of Modern Catalysis and Kinetics 3rd edn (Wiley, 2017).
    1. Marin, G. B., Yablonsky, G. S. & Constales, D. Kinetics of Chemical Reactions: Decoding Complexity 2nd edn (Wiley, 2019).

Publication types

LinkOut - more resources