Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May 18;13(1):22.
doi: 10.1186/s13229-022-00500-x.

Resting state EEG power spectrum and functional connectivity in autism: a cross-sectional analysis

Collaborators, Affiliations

Resting state EEG power spectrum and functional connectivity in autism: a cross-sectional analysis

Pilar Garcés et al. Mol Autism. .

Abstract

Background: Understanding the development of the neuronal circuitry underlying autism spectrum disorder (ASD) is critical to shed light into its etiology and for the development of treatment options. Resting state EEG provides a window into spontaneous local and long-range neuronal synchronization and has been investigated in many ASD studies, but results are inconsistent. Unbiased investigation in large and comprehensive samples focusing on replicability is needed.

Methods: We quantified resting state EEG alpha peak metrics, power spectrum (PS, 2-32 Hz) and functional connectivity (FC) in 411 children, adolescents and adults (n = 212 ASD, n = 199 neurotypicals [NT], all with IQ > 75). We performed analyses in source-space using individual head models derived from the participants' MRIs. We tested for differences in mean and variance between the ASD and NT groups for both PS and FC using linear mixed effects models accounting for age, sex, IQ and site effects. Then, we used machine learning to assess whether a multivariate combination of EEG features could better separate ASD and NT participants. All analyses were embedded within a train-validation approach (70%-30% split).

Results: In the training dataset, we found an interaction between age and group for the reactivity to eye opening (p = .042 uncorrected), and a significant but weak multivariate ASD vs. NT classification performance for PS and FC (sensitivity 0.52-0.62, specificity 0.59-0.73). None of these findings replicated significantly in the validation dataset, although the effect size in the validation dataset overlapped with the prediction interval from the training dataset.

Limitations: The statistical power to detect weak effects-of the magnitude of those found in the training dataset-in the validation dataset is small, and we cannot fully conclude on the reproducibility of the training dataset's effects.

Conclusions: This suggests that PS and FC values in ASD and NT have a strong overlap, and that differences between both groups (in both mean and variance) have, at best, a small effect size. Larger studies would be needed to investigate and replicate such potential effects.

Keywords: Autism spectrum disorder; EEG; Functional connectivity; Power spectrum; Resting state.

PubMed Disclaimer

Conflict of interest statement

JD is former, and PG, CHC, SH and JFH are current full-time employees of F. Hoffmann–La Roche Ltd. TBa served in an advisory or consultancy role for ADHS digital, Infectopharm, Lundbeck, Medice, Neurim Pharmaceuticals, Oberberg GmbH, Roche and Takeda. He received conference support or speaker’s fee by Medice and Takeda. He received royalties from Hogrefe, Kohlhammer, CIP Medien, Oxford University Press. SB has acted as an author, consultant or lecturer for Medice, Roche, Hogrefe, Kohlhammer and UTB. JKB was a consultant to/member of advisory board of/and/or speaker for Janssen-Cilag BV, Eli Lilly, Takeda (Shire), Medice, Roche and Servier. CFB is director and shareholder in SBGneuro. DGMM has been a consultant to and advisory board member for Roche and Servier; he is not an employee of nor stock shareholder in any of these companies. JT is a consultant for F. Hoffmann–La Roche Ltd. TC has served as a paid consultant to F. Hoffmann-La Roche Ltd. and Servier and has received royalties from Sage Publications and Guilford Publications.

Figures

Fig. 1
Fig. 1
Overview of the statistical analysis approach. Univariate and multivariate statistics were performed in the training dataset, as well as control comparisons to evaluate the sensitivity of the results to pipeline choices. From this, concrete hypotheses are generated and tested in the validation dataset
Fig. 2
Fig. 2
Alpha peak measures. For each measure, the scatter plot of the raw values as a function of age is shown in the left side and the residuals of the linear mixed effects model y ~ 1 + age + sex + IQ + (1|site) on the right side. All plots derived from the training dataset (147 ASD and 140 NT)
Fig. 3
Fig. 3
Reactivity to eye opening: distribution and age trends in the training (A) and the validation dataset (B). The scatter plot of the raw values as a function of age is shown in the left side, along with the regression lines for each group. The distribution of reactivity values for each age group along with the corresponding Cohen’s d effect size is shown on the right side. Typically, d ~ 0.20 is considered small and d ~ 0.50 a medium effect size. PI indicates the 95% prediction interval from the training dataset to the validation dataset, and it was calculated following [38] based on the training dataset effects and the sample size of both datasets
Fig. 4
Fig. 4
Classification performance of the multivariate models in internal cross-validation and external test in the validation dataset. For each of the four models subjected to testing in the validation dataset, the cross-validation performance of each of the repeated random splits within the training dataset is shown as a gray dot along with the performance in the validation dataset (blue line). All and Child indicate models trained and tested in the whole cohort and children cohort, respectively. enet and SVC represent elastic net and linear support vector classifier models, respectively

Similar articles

Cited by

References

    1. Maenner MJ, Shaw KA, Baio J, Washington A, Patrick M, DiRienzo M, et al. Prevalence of Autism spectrum disorder among children aged 8 years—Autism and developmental disabilities monitoring network, 11 sites, United States, 2016. MMWR Surveill Summ. 2020;69(4):1–12. doi: 10.15585/mmwr.ss6904a1. - DOI - PMC - PubMed
    1. Lord C, Brugha TS, Charman T, Cusack J, Dumas G, Frazier T, et al. Autism spectrum disorder. Nat Rev Dis Primer. 2020;6(1):1–23. doi: 10.1038/s41572-019-0138-4. - DOI - PMC - PubMed
    1. Masi A, DeMayo MM, Glozier N, Guastella AJ. An overview of Autism spectrum disorder, heterogeneity and treatment options. Neurosci Bull. 2017;33(2):183–193. doi: 10.1007/s12264-017-0100-y. - DOI - PMC - PubMed
    1. Kang E, Keifer CM, Levy EJ, Foss-Feig JH, McPartland JC, Lerner MD. Atypicality of the N170 event-related potential in Autism spectrum disorder: a meta-analysis. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3(8):657–666. - PMC - PubMed
    1. Cooke E. Letter of support for N170 ERP as a prognostic biomarker for adaptive social functioning and its potential to stratify study populations in people with Autism spectrum disorders (ASD) without intellectual disability. 2020. Available from: https://www.ema.europa.eu/en/documents/other/letter-support-n170-erp-pro...

Publication types