Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun 1;14(21):24351-24362.
doi: 10.1021/acsami.2c03607. Epub 2022 May 19.

Imparting Multifunctionality in Zr-MOFs Using the One-Pot Mixed-Linker Strategy: The Effect of Linker Environment and Enhanced Pollutant Removal

Affiliations

Imparting Multifunctionality in Zr-MOFs Using the One-Pot Mixed-Linker Strategy: The Effect of Linker Environment and Enhanced Pollutant Removal

Yanxin Gao et al. ACS Appl Mater Interfaces. .

Abstract

The development of mixed-linker metal-organic frameworks (MOFs) is an efficient strategy to improve the performance of MOFs. Herein, we successfully integrate tetrakis(4-carboxyphenyl)porphyrin (TCPP) into different Zr-MOFs via a facile one-pot solvothermal synthesis while preserving the integrity of their frameworks. The functional groups, length of primary linkers, and the inner pore structure significantly affected the properties of the synthesized TCPP@MOFs, such as surface area, average pore size, and 1O2 productivity. Among them, TCPP@PCN-777 demonstrated the largest surface area (2386 cm2/g, as measured by N2 uptake) and the highest 1O2 generation rate (1.15 h-1, [1O2]ss = 2.66 × 10-12 M) under irradiation. The TCPP loading was also shown to affect the crystal phase, morphology, surface area, and photochemical properties of the synthesized MOFs. Therefore, TCPP@PCN-777s with various TCPP loadings were synthesized to investigate the optimum loading. The optimized TCPP@MOF, TCPP@PCN-777-30, was evaluated for its removal of model contaminant ranitidine (RND) through both adsorption and photodegradation. TCPP@PCN-777-30 showed a higher adsorption capacity toward RND than both the parent MOF (PCN-777) and commercially available activated carbon, and effectively degraded RND in aqueous solution (>99% photodegradation in 1 h). With irradiation, TCPP@PCN-777-30 showed a minimal loss in adsorption efficiency over four consecutive treatment cycles, confirming the reusability of the material enabled through the incorporation of TCPP into the MOF structure. This work not only developed an efficient multifunctional material for environmental remediation but also forwarded knowledge on the effect of linker environment (i.e., functional groups, framework structure, and linker ratio) on the properties of TCPP@MOFs to guide future research on mixed-linker MOFs.

Keywords: MOFs; emerging contaminants; mixed-linker; photochemistry; porphyrin.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources