Iridescent Daytime Radiative Cooling with No Absorption Peaks in the Visible Range
- PMID: 35587771
- DOI: 10.1002/smll.202202400
Iridescent Daytime Radiative Cooling with No Absorption Peaks in the Visible Range
Abstract
Coatings for passive radiative cooling applications must be highly reflected in the solar spectrum, and thus can hardly support any coloration without losing their functionality. In this work, a colorful daytime radiative cooling surface based on structural coloration is reported. A designed radiative cooler with a bioinspired array of truncated SiO2 microcones is manufactured via a self-assembly method and reactive ion etching. Complemented with a silver reflector, the radiative cooler exhibits broadband iridescent coloration due to the scattering induced by the truncated microcone array while maintaining an average reflectance of 95% in the solar spectrum and a high thermal emissivity (ε) of 0.95, owing to the reduced impedance mismatch provided by the patterned surface at infrared wavelengths, reaching an estimated cooling power of ≈143 W m-2 at an ambient temperature of 25 °C and a measured average temperature drop of 7.1 °C under direct sunlight. This strong cooling performance is attributed to its bioinspired surface pattern, which promotes both the aesthetics and cooling capacity of the daytime radiative cooler.
Keywords: bioinspired surface; colorful radiative cooler; radiative sky cooling; thermal emissivity.
© 2022 Wiley-VCH GmbH.
Similar articles
-
Structurally Colored Photonic Crystal Biomimetic Microstructures for Daytime Radiative Cooling.ACS Appl Mater Interfaces. 2024 Nov 13;16(45):62827-62837. doi: 10.1021/acsami.4c10050. Epub 2024 Nov 1. ACS Appl Mater Interfaces. 2024. PMID: 39486038
-
Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling.Opt Express. 2019 Oct 14;27(21):30102-30115. doi: 10.1364/OE.27.030102. Opt Express. 2019. PMID: 31684263
-
Spectrally Selective Nanoparticle Mixture Coating for Passive Daytime Radiative Cooling.ACS Appl Mater Interfaces. 2021 May 12;13(18):21119-21126. doi: 10.1021/acsami.0c20311. Epub 2021 Apr 29. ACS Appl Mater Interfaces. 2021. PMID: 33926186
-
Recent Progress in Daytime Radiative Cooling: Advanced Material Designs and Applications.Small Methods. 2022 Apr;6(4):e2101379. doi: 10.1002/smtd.202101379. Epub 2022 Feb 25. Small Methods. 2022. PMID: 35212488 Review.
-
Colloidal inorganic nano- and microparticles for passive daytime radiative cooling.Nano Converg. 2023 Apr 18;10(1):17. doi: 10.1186/s40580-023-00365-7. Nano Converg. 2023. PMID: 37071232 Free PMC article. Review.
Cited by
-
Radiative Cooling Materials for Extreme Environmental Applications.Nanomicro Lett. 2025 Jul 7;17(1):324. doi: 10.1007/s40820-025-01835-9. Nanomicro Lett. 2025. PMID: 40622516 Free PMC article. Review.
-
Radiative Cooling for Energy Sustainability: From Fundamentals to Fabrication Methods Toward Commercialization.Adv Sci (Weinh). 2024 Jan;11(2):e2305067. doi: 10.1002/advs.202305067. Epub 2023 Nov 10. Adv Sci (Weinh). 2024. PMID: 37949679 Free PMC article. Review.
-
Anti-Environmental Aging Passive Daytime Radiative Cooling.Adv Sci (Weinh). 2024 Mar;11(10):e2305664. doi: 10.1002/advs.202305664. Epub 2023 Dec 26. Adv Sci (Weinh). 2024. PMID: 38148594 Free PMC article. Review.
-
Micro/nanofabrication of heat management materials for energy-efficient building facades.Microsyst Nanoeng. 2024 Aug 26;10(1):115. doi: 10.1038/s41378-024-00744-y. Microsyst Nanoeng. 2024. PMID: 39183234 Free PMC article. Review.
-
Colored Radiative Cooling: from Photonic Approaches to Fluorescent Colors and Beyond.Adv Mater. 2025 Apr;37(15):e2414300. doi: 10.1002/adma.202414300. Epub 2025 Mar 4. Adv Mater. 2025. PMID: 40040298 Free PMC article. Review.
References
-
- N. Wang, P. E. Phelan, C. Harris, J. Langevin, B. Nelson, K. Sawyer, Renewable Sustainable Energy Rev. 2018, 82, 976.
-
- B. I. Cook, J. E. Smerdon, R. Seager, S. Coats, Clim. Dyn. 2014, 43, 2607.
-
- F. Ascione, Sol. Energy 2017, 154, 34.
-
- S. C. Sherwood, M. J. Webb, J. D. Annan, K. C. Armour, P. M. Forster, J. C. Hargreaves, G. Hegerl, S. A. Klein, K. D. Marvel, E. J. Rohling, M. Watanabe, T. Andrews, P. Braconnot, C. S. Bretherton, G. L. Foster, Z. Hausfather, A. S. Heydt, R. Knutti, T. Mauritsen, J. R. Norris, C. Proistosescu, M. Rugenstein, G. A. Schmidt, K. B. Tokarska, M. D. Zelinka, Rev. Geophys. 2020, 58, 4.
-
- X. Yin, R. Yang, G. Tan, S. Fan, Science 2020, 370, 786.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources