Directed evolution of nonheme iron enzymes to access abiological radical-relay C(sp3)-H azidation
- PMID: 35587977
- PMCID: PMC9933208
- DOI: 10.1126/science.abj2830
Directed evolution of nonheme iron enzymes to access abiological radical-relay C(sp3)-H azidation
Abstract
We report the reprogramming of nonheme iron enzymes to catalyze an abiological C(sp3)‒H azidation reaction through iron-catalyzed radical relay. This biocatalytic transformation uses amidyl radicals as hydrogen atom abstractors and Fe(III)‒N3 intermediates as radical trapping agents. We established a high-throughput screening platform based on click chemistry for rapid evolution of the catalytic performance of identified enzymes. The final optimized variants deliver a range of azidation products with up to 10,600 total turnovers and 93% enantiomeric excess. Given the prevalence of radical relay reactions in organic synthesis and the diversity of nonheme iron enzymes, we envision that this discovery will stimulate future development of metalloenzyme catalysts for synthetically useful transformations unexplored by natural evolution.
Conflict of interest statement
Figures




Similar articles
-
Radical fluorine transfer catalysed by an engineered nonheme iron enzyme.Methods Enzymol. 2024;696:231-247. doi: 10.1016/bs.mie.2024.03.004. Epub 2024 Apr 10. Methods Enzymol. 2024. PMID: 38658081 Free PMC article.
-
Radical-relay C(sp3)-H azidation catalyzed by an engineered nonheme iron enzyme.Methods Enzymol. 2024;703:195-213. doi: 10.1016/bs.mie.2024.07.003. Epub 2024 Jul 23. Methods Enzymol. 2024. PMID: 39260996 Free PMC article.
-
Biocatalytic Generation of Trifluoromethyl Radicals by Nonheme Iron Enzymes for Enantioselective Alkene Difunctionalization.J Am Chem Soc. 2024 Dec 18;146(50):34878-34886. doi: 10.1021/jacs.4c14310. Epub 2024 Dec 5. J Am Chem Soc. 2024. PMID: 39636656
-
Bio-inspired Nonheme Iron Oxidation Catalysis: Involvement of Oxoiron(V) Oxidants in Cleaving Strong C-H Bonds.Angew Chem Int Ed Engl. 2020 May 4;59(19):7332-7349. doi: 10.1002/anie.201906551. Epub 2020 Mar 2. Angew Chem Int Ed Engl. 2020. PMID: 31373120 Review.
-
Functional models for mononuclear nonheme iron enzymes.Curr Opin Chem Biol. 2003 Dec;7(6):674-82. doi: 10.1016/j.cbpa.2003.10.008. Curr Opin Chem Biol. 2003. PMID: 14644175 Review.
Cited by
-
Chemodivergent C(sp3)-H and C(sp2)-H Cyanomethylation Using Engineered Carbene Transferases.Nat Catal. 2023 Feb;6(2):152-160. doi: 10.1038/s41929-022-00908-x. Epub 2023 Jan 19. Nat Catal. 2023. PMID: 36875868 Free PMC article.
-
CdS Quantum Dot Gels as a Direct Hydrogen Atom Transfer Photocatalyst for C-H Activation.Angew Chem Int Ed Engl. 2024 Sep 9;63(37):e202403186. doi: 10.1002/anie.202403186. Epub 2024 Aug 5. Angew Chem Int Ed Engl. 2024. PMID: 38900647 Free PMC article.
-
Simple, catalytic C(sp3)-H azidation using the C-H donor as the limiting reagent.Chem Commun (Camb). 2024 Mar 28;60(27):3705-3708. doi: 10.1039/d3cc04728h. Chem Commun (Camb). 2024. PMID: 38477139 Free PMC article.
-
Radical fluorine transfer catalysed by an engineered nonheme iron enzyme.Methods Enzymol. 2024;696:231-247. doi: 10.1016/bs.mie.2024.03.004. Epub 2024 Apr 10. Methods Enzymol. 2024. PMID: 38658081 Free PMC article.
-
Catalyzing the future: recent advances in chemical synthesis using enzymes.Curr Opin Chem Biol. 2024 Dec;83:102536. doi: 10.1016/j.cbpa.2024.102536. Epub 2024 Oct 5. Curr Opin Chem Biol. 2024. PMID: 39369557 Free PMC article. Review.
References
-
- Bornscheuer UT, Philos. Trans. A Math. Phys. Eng. Sci. 376, 20170063 (2018). - PubMed
-
- Chen K, Arnold FH, Nat. Catal. 3, 203–213 (2020).
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources