Angular-Resolved Thomson Parabola Spectrometer for Laser-Driven Ion Accelerators
- PMID: 35590929
- PMCID: PMC9104512
- DOI: 10.3390/s22093239
Angular-Resolved Thomson Parabola Spectrometer for Laser-Driven Ion Accelerators
Abstract
This article reports the development, construction, and experimental test of an angle-resolved Thomson parabola (TP) spectrometer for laser-accelerated multi-MeV ion beams in order to distinguish between ionic species with different charge-to-mass ratio. High repetition rate (HHR) compatibility is guaranteed by the use of a microchannel plate (MCP) as active particle detector. The angular resolving power, which is achieved due to an array of entrance pinholes, can be simply adjusted by modifying the geometry of the experiment and/or the pinhole array itself. The analysis procedure allows for different ion traces to cross on the detector plane, which greatly enhances the flexibility and capabilities of the detector. A full characterization of the TP magnetic field is implemented into a relativistic code developed for the trajectory calculation of each pinhole beamlet. We describe the first test of the spectrometer at the 1PW VEGA 3 laser facility at CLPU, Salamanca (Spain), where up to 15MeV protons and carbon ions from a 3μm laser-irradiated Al foil are detected.
Keywords: charged-particle spectroscopy; instrumentation; ion beams; plama diagnostics.
Conflict of interest statement
The authors declare no conflict of interest.
Figures







Similar articles
-
Development and calibration of a Thomson parabola with microchannel plate for the detection of laser-accelerated MeV ions.Rev Sci Instrum. 2008 Sep;79(9):093306. doi: 10.1063/1.2987687. Rev Sci Instrum. 2008. PMID: 19044406
-
An angular-resolved multi-channel Thomson parabola spectrometer for laser-driven ion measurement.Rev Sci Instrum. 2018 Sep;89(9):093302. doi: 10.1063/1.5042424. Rev Sci Instrum. 2018. PMID: 30278712
-
Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles.Rev Sci Instrum. 2011 Jul;82(7):073301. doi: 10.1063/1.3606446. Rev Sci Instrum. 2011. PMID: 21806176
-
Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams.Phys Med. 2014 May;30(3):255-70. doi: 10.1016/j.ejmp.2013.09.002. Epub 2013 Oct 5. Phys Med. 2014. PMID: 24100298 Review.
-
Review of laser-driven ion sources and their applications.Rep Prog Phys. 2012 May;75(5):056401. doi: 10.1088/0034-4885/75/5/056401. Epub 2012 Apr 17. Rep Prog Phys. 2012. PMID: 22790586 Review.
Cited by
-
Design and implementation of the first proton beam transport line in VEGA-3 Petawatt laser system.Sci Rep. 2024 Dec 2;14(1):29935. doi: 10.1038/s41598-024-81748-6. Sci Rep. 2024. PMID: 39623002 Free PMC article.
-
Production of carbon-11 for PET preclinical imaging using a high-repetition rate laser-driven proton source.Sci Rep. 2024 May 20;14(1):11448. doi: 10.1038/s41598-024-61540-2. Sci Rep. 2024. PMID: 38769370 Free PMC article.
References
-
- Strickland D., Mourou G. Compression of amplified chirped optical pulses. Opt. Commun. 1985;55:447–449. doi: 10.1016/0030-4018(85)90151-8. - DOI
-
- Yoon J.W., Kim Y.G., Choi I.W., Sung J.H., Lee H.W., Lee S.K., Nam C.H. Realization of laser intensity over 1023W/cm2. Optica. 2021;8:630–635. doi: 10.1364/OPTICA.420520. - DOI
-
- Macchi A., Borghesi M., Passoni M. Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 2013;85:751–793. doi: 10.1103/RevModPhys.85.751. - DOI
-
- Esarey E., Schroeder C.B., Leemans W.P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 2009;81:1229–1285. doi: 10.1103/RevModPhys.81.1229. - DOI
LinkOut - more resources
Full Text Sources
Miscellaneous