Reconstructing landscapes of ungulate parturition and predation using vegetation phenology
- PMID: 35592351
- PMCID: PMC9113264
- DOI: 10.1093/cz/zoab058
Reconstructing landscapes of ungulate parturition and predation using vegetation phenology
Abstract
Enhanced vegetation index (EVI) data can be used to identify and define the space in which ungulates practice parturition and encounter predation. This study explores the use of EVI data to identify landscapes linked to ungulate parturition and predation events across space, time, and environmental conditions. As a case study, we used the moose population (Alces alces) of northern Minnesota in the USA. Using remotely sensed EVI data rasters and global positioning system collar data, we quantified how vegetation phenology and moose movement shaped the births and predation of 52 moose calves from 2013 to 2020 on or adjacent to the Grand Portage Indian Reservation. The known sources of predation were American black bears (Ursus americanus, n = 22) and gray wolves (Canis lupus, n = 28). Satellite-derived data summarizing seasonal landscape features at the local level revealed that landscape heterogeneity use by moose can help to quantitatively identify landscapes of parturition and predation in space and time across large areas. Vegetation phenology proved to be differentiable between adult moose ranges, sites of cow parturition, and sites of calf predation. Landscape characteristics of each moose group were consistent and tractable based on environment, suggesting that sites of parturition and predation of moose are predictable in space and time. It is possible that moose selected specific landscapes for parturition despite risk of increased predation of their calves, which could be an example of an "ecological trap." This analytical framework can be employed to identify areas for future ungulate research on the impacts of landscape on parturition and predation dynamics.
Keywords: EVI; bear; moose; parturition; predation; prey; vegetation phenology.
© The Author(s) (2021). Published by Oxford University Press on behalf of Editorial Office, Current Zoology.
Figures



References
-
- Ballard WB, Franzmann AW, Taylor KP, Sparker TH, Schwartz CC. et al. 1979. Comparison of techniques utilized to determine moose calf mortality in Alaska. 15th North Am Moose Conf Work; August 1979. Kenai, AK, United States. 22–39.
-
- Ballard WB, Whitman JS, Reed DJ, 1991. Population dynamics of moose in south-central Alaska. Wildl Monogr 114:3–49.
-
- Berger J, 1991. Pregnancy incentives, predation constraints and habitat shifts: experimental and field evidence for wild bighorn sheep. Anim Behav 41:61–77.
-
- Beschta RL, Ripple WJ, 2013. Are wolves saving yellowstone’s aspen? A landscape-level test of a behaviorally mediated trophic cascade: comment. Ecology 94:1420–1425. - PubMed
-
- Bleicher SS, Rosenzweig ML, 2018. Too much of a good thing? A landscape-of-fear analysis for collared peccaries Pecari tajacu reveals hikers act as a greater deterrent than thorny or bitter food. Can J Zool 96:317–324.
LinkOut - more resources
Full Text Sources
Research Materials