Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug 15:436:129109.
doi: 10.1016/j.jhazmat.2022.129109. Epub 2022 May 14.

Siloxane-modified MnOx catalyst for oxidation of coal-related o-xylene in presence of water vapor

Affiliations

Siloxane-modified MnOx catalyst for oxidation of coal-related o-xylene in presence of water vapor

Yingjian Chen et al. J Hazard Mater. .

Abstract

In coal-combustion energy production, presence of water vapor in flue gas causes catalyst deactivation and leads to the release of large quantities of volatile organic compounds (VOCs). In this study, design of a low-temperature, hydrophobic catalyst for flue gas purification was achieved by modifying support material with inorganic siloxane. Introduction of 5% water vapor into simulated flue gas at 300 °C reduced oxidation efficiency for o-xylene removal by 26% with unmodified MnOx/γ-Al2O3 catalyst, whereas with modified catalyst MnOx-Si0.9/γ-Al2O3 oxidation efficiency was reduced by only 5%. MnOx-Si0.9/γ-Al2O3 exhibited stable catalytic efficiency for o-xylene gas oxidation containing water vapor for over 200 min. Water-resistance of the catalyst was effective for removal of multi-coal combustion pollutants (Hg0 and NO) and moreover, hydrophobicity of the catalyst led to a reduction in surface sulfate deposition, thereby lowering toxicity of SO2 from simulated flue gas. DRIFTS analysis showed that the hydrophobic catalyst surface not only reduces water adsorption, but also promotes water volatilization. Based on molecular adsorption energies, catalyst support modification with siloxane inhibits water adsorption and promotes organic adsorption and thus provides a new strategy for preparing water-resistant catalysts for flue gas purification.

Keywords: Catalytic oxidation; Coal combustion; Hydrophobic modification; VOCs; Water vapor.

PubMed Disclaimer

LinkOut - more resources