Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Mar;57(3):755-72.
doi: 10.1152/jn.1987.57.3.755.

Visual orientation and spatial frequency discrimination: a comparison of single neurons and behavior

Visual orientation and spatial frequency discrimination: a comparison of single neurons and behavior

A Bradley et al. J Neurophysiol. 1987 Mar.

Abstract

Neurons in the visual cortex respond selectively to stimulus orientation and spatial frequency. Changes in response amplitudes of these neurons could be the neurophysiological basis of orientation and spatial frequency discrimination. We have estimated the minimum differences in stimulus orientation and spatial frequency that can produce reliable changes in the responses of individual neurons in cat visual cortex. We compare these values with orientation and spatial frequency discrimination thresholds determined behaviorally. Slopes of the tuning functions and response variability determine the minimum orientation and spatial frequency differences that can elicit a reliable response change. These minimum values were obtained from single cells using receiver operating characteristic (ROC) analysis. The average minimum orientation and spatial frequency differences that could be signaled reliably by cells from our sample were 6.4 degrees (n = 22) and 21.3% (n = 18), respectively. These values are approximately 0.20 of the average full tuning width at one-half height of the cells. Although these average values are well above the behaviorally determined thresholds, the most selective cells signaled orientation and frequency differences of 1.84 degrees and 5.25%, respectively. These values are of the same order of magnitude as the behavioral thresholds. We show that, because of slow fluctuations in a cell's responsivity, ROC analysis overestimates response variability. We estimate that these slow response fluctuations elevated our estimates of single cell "thresholds" by, on average, 30%. Our data point to an approximate correspondence between orientation and spatial frequency discrimination "thresholds" determined behaviorally and those estimated from the most selective single cortical cells. Interpretation of this quantitative correspondence is considered in the discussion.

PubMed Disclaimer

Publication types

LinkOut - more resources