Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep 10;838(Pt 2):156053.
doi: 10.1016/j.scitotenv.2022.156053. Epub 2022 May 18.

Migration of terephthalate from scraps of poly(ethylene terephthalate) (PET) in water and artificial seawater

Affiliations

Migration of terephthalate from scraps of poly(ethylene terephthalate) (PET) in water and artificial seawater

Nobuhiro Takahashi et al. Sci Total Environ. .

Abstract

We report the migration of terephthalate and some low molecular weight organic compounds from poly(ethylene terephthalate) (PET) scraps in Milli-Q water and artificial seawater (ASW). The photochemical processes and the subsequent dark reactions were investigated using PET scraps obtained from postconsumer bottles of commercial non‑carbonated mineral water. Concentrations of terephthalate exponentially increased with irradiation time, reaching approximately 6-8 μmol L-1 in ASW after 80 h irradiation. The photochemical migrations of compounds related to terephthalate were also observed. Concentrations of terephthalate and related compounds reached higher concentrations in ASW than in Milli-Q water. After 80 h irradiation, two dark experiments were conducted: one on the solutions after irradiation without PET scraps, and the other on photochemically damaged PET scraps. In ASW in the dark without PET scraps, the terephthalate concentration increased, and concentrations of other compounds related to terephthalate also changed. The results suggested that terephthalate was generated by hydrolytic reaction in dark ASW from the scission products of PET which were generated during the irradiation of PET scraps. Photochemically damaged PET scraps released terephthalate and related compounds in the dark. The half-life of the photo-irradiated PET scraps in the dark is approximately 205 years. Our results show that PET bottles in marine environments can continuously release terephthalate and other low molecular weight organic compounds during the day at the sunny surface, at the dark ocean floor, and during the night.

Keywords: Hydrolytic; Marine plastics; Photochemical reaction; Poly(ethylene terephthalate); Terephthalate.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources