Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul 11;380(2227):20200429.
doi: 10.1098/rsta.2020.0429. Epub 2022 May 23.

Emergence and algorithmic information dynamics of systems and observers

Affiliations

Emergence and algorithmic information dynamics of systems and observers

Felipe S Abrahão et al. Philos Trans A Math Phys Eng Sci. .

Abstract

One of the challenges of defining emergence is that one observer's prior knowledge may cause a phenomenon to present itself as emergent that to another observer appears reducible. By formalizing the act of observing as mutual perturbations between dynamical systems, we demonstrate that the emergence of algorithmic information does depend on the observer's formal knowledge, while being robust vis-a-vis other subjective factors, particularly: the choice of programming language and method of measurement; errors or distortions during the observation; and the informational cost of processing. This is called observer-dependent emergence (ODE). In addition, we demonstrate that the unbounded and rapid increase of emergent algorithmic information implies asymptotically observer-independent emergence (AOIE). Unlike ODE, AOIE is a type of emergence for which emergent phenomena will be considered emergent no matter what formal theory an observer might bring to bear. We demonstrate the existence of an evolutionary model that displays the diachronic variant of AOIE and a network model that displays the holistic variant of AOIE. Our results show that, restricted to the context of finite discrete deterministic dynamical systems, computable systems and irreducible information content measures, AOIE is the strongest form of emergence that formal theories can attain. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.

Keywords: algorithmic information dynamics; dynamical systems; emergence; observers.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Abrahão FS, Zenil H. 2022. Emergence and algorithmic information dynamics of systems and observers. Figshare. (10.6084/m9.figshare.c.5901204) - DOI - PMC - PubMed
    1. Abrahão FS, Wehmuth K, Ziviani A. 2019. Algorithmic networks: central time to trigger expected emergent open-endedness. Theor. Comput. Sci. 785, 83-116. (10.1016/j.tcs.2019.03.008) - DOI
    1. Adams A, Zenil H, Davies PCW, Walker SI. 2017. Formal definitions of unbounded evolution and innovation reveal universal mechanisms for open-ended evolution in dynamical systems. Sci. Rep. 7, 997. (10.1038/s41598-017-00810-8) - DOI - PMC - PubMed
    1. Bedau MA. 1997. Weak emergence. Philos. Perspect. 11, 375-399.
    1. Hernández-Orozco S, Hernández-Quiroz F, Zenil H. 2018. Undecidability and irreducibility conditions for open-ended evolution and emergence. Artif. Life 24, 56-70. (10.1162/ARTL_a_00254) - DOI - PubMed

LinkOut - more resources