Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May;13(5):12289-12297.
doi: 10.1080/21655979.2022.2070965.

Long non-coding RNA HLA-F antisense RNA 1 inhibits the maturation of microRNA-613 in polycystic ovary syndrome to promote ovarian granulosa cell proliferation and inhibit cell apoptosis

Affiliations

Long non-coding RNA HLA-F antisense RNA 1 inhibits the maturation of microRNA-613 in polycystic ovary syndrome to promote ovarian granulosa cell proliferation and inhibit cell apoptosis

Xiaohua Li et al. Bioengineered. 2022 May.

Abstract

MicroRNA-613 (miR-613) inhibits granulosa cell proliferation, suggesting its involvement in polycystic ovary syndrome (PCOS). We predicted that long non-coding RNA (lncRNA) HLA-F antisense RNA 1 (HLA-F-AS1) could interact with premature miR-613. We then explored the crosstalk between HLA-F-AS1 and miR-613 in PCOS. In this study, follicular fluid donated by 58 healthy controls and 58 PCOS patients was used to analyze the expression of HLA-F-AS1 and miR-613 (mature and premature). The direct interaction between HLA-F-AS1 and premature miR-613 was evaluated by RNA pull-down assay. Overexpression of both HLA-F-AS1 and miR-613 was achieved in granulosa cells to assess their interactions. Cell proliferation and apoptosis were detected with BrdU assay and cell apoptosis assay, respectively. We found that miR-613 was highly expressed in PCOS, while HLA-F-AS1 was downregulated in PCOS. HLA-F-AS1 directly interacted with premature miR-613, and overexpression of HLA-F-AS1 increased the expression levels of premature miR-613, but decreased the expression levels of mature miR-613. HLA-F-AS1 increased ovarian granulosa cell proliferation and inhibited cell apoptosis. MiR-613 played an opposite role and suppressed the role of HLA-F-AS1. Therefore, HLA-F-AS1 may inhibit the maturation of miR-613 in PCOS to promote ovarian granulosa cell proliferation and inhibit cell apoptosis.

Keywords: HLA-F-AS1; Polycystic ovary syndrome; apoptosis; miR-613; proliferation.

PubMed Disclaimer

Conflict of interest statement

No potential conflict of interest was reported by the author(s).

Figures

None
Graphical abstract
Figure 1.
Figure 1.
Analysis of the expression of HLA-F-AS1 and miR-613 in PCOS.
Figure 2.
Figure 2.
Correlations between HLA-F-AS1 and miR-613 across PCOS samples.
Figure 3.
Figure 3.
Exploration of the direct interaction of HLA-F-AS1 with premature miR-613, and the detection of HLA-F-AS1 in subcellular location of COV434 cells.
Figure 4.
Figure 4.
Analysis of the role of HLA-F-AS1 in the maturation of miR-613.
Figure 5.
Figure 5.
Analysis of the role of HLA-F-AS1 and miR-613 in the proliferation and apoptosis of COV434 cells.

Similar articles

Cited by

References

    1. Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 2018;14(5):270–284. - PubMed
    1. Bellver J, Rodríguez-Tabernero L, Robles A, et al. Polycystic ovary syndrome throughout a woman’s life. J Assist Reprod Genet. 2018;35(1):25–39. - PMC - PubMed
    1. Liu J, Wu Q, Hao Y, et al. Measuring the global disease burden of polycystic ovary syndrome in 194 countries: global burden of disease study 2017. Hum Reprod. 2021;36(4):1108–1119. - PMC - PubMed
    1. Gilbert EW, Tay CT, Hiam DS, et al. Comorbidities and complications of polycystic ovary syndrome: an overview of systematic reviews. Clin Endocrinol (Oxf). 2018;89(6):683–699. - PubMed
    1. Bahri Khomami M, Joham AE, Boyle JA, et al. Increased maternal pregnancy complications in polycystic ovary syndrome appear to be independent of obesity-A systematic review, meta-analysis, and meta-regression. Obes Rev. 2019;20(5):659–674. - PubMed

MeSH terms