Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022:2399:87-122.
doi: 10.1007/978-1-0716-1831-8_5.

A Practical Guide to Integrating Multimodal Machine Learning and Metabolic Modeling

Affiliations

A Practical Guide to Integrating Multimodal Machine Learning and Metabolic Modeling

Supreeta Vijayakumar et al. Methods Mol Biol. 2022.

Abstract

Complex, distributed, and dynamic sets of clinical biomedical data are collectively referred to as multimodal clinical data. In order to accommodate the volume and heterogeneity of such diverse data types and aid in their interpretation when they are combined with a multi-scale predictive model, machine learning is a useful tool that can be wielded to deconstruct biological complexity and extract relevant outputs. Additionally, genome-scale metabolic models (GSMMs) are one of the main frameworks striving to bridge the gap between genotype and phenotype by incorporating prior biological knowledge into mechanistic models. Consequently, the utilization of GSMMs as a foundation for the integration of multi-omic data originating from different domains is a valuable pursuit towards refining predictions. In this chapter, we show how cancer multi-omic data can be analyzed via multimodal machine learning and metabolic modeling. Firstly, we focus on the merits of adopting an integrative systems biology led approach to biomedical data mining. Following this, we propose how constraint-based metabolic models can provide a stable yet adaptable foundation for the integration of multimodal data with machine learning. Finally, we provide a step-by-step tutorial for the combination of machine learning and GSMMs, which includes: (i) tissue-specific constraint-based modeling; (ii) survival analysis using time-to-event prediction for cancer; and (iii) classification and regression approaches for multimodal machine learning. The code associated with the tutorial can be found at https://github.com/Angione-Lab/Tutorials_Combining_ML_and_GSMM .

Keywords: Cancer survival prediction; Data integration; Flux balance analysis; Machine learning; Metabolic modeling; Multi-omics; Multimodal.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Shi Y, Kim S (2014) Towards information analysis for big data. In: 2014 7th conference on Control and automation (CA). IEEE, Piscataway, pp 3–5
    1. Gupta A (2015) Big data analysis using computational intelligence and Hadoop: a study. In: 2015 2nd international conference on computing for sustainable global development (INDIACom). IEEE, Piscataway, pp 1397–1401
    1. Ceri S, Kaitoua A, Masseroli M, Pinoli P, Venco F (2016) Data management for heterogeneous genomic datasets. IEEE/ACM Trans Comput Biol Bioinform 14(6):1251–1264 - PubMed
    1. Kench A, Janeja VP, Yesha Y, Rishe N, Grasso MA, Niskar A (2015) Clinico-genomic data analytics for precision diagnosis and disease management. In: 2015 international conference on healthcare informatics (ICHI). IEEE, Piscataway, pp 263–271
    1. Zieba A, Grannas K, Söderberg O, Gullberg M, Nilsson M, Landegren U (2012) Molecular tools for companion diagnostics. New Biotechnol 29(6):634–640

Publication types

LinkOut - more resources