Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May 25:294:943-944.
doi: 10.3233/SHTI220632.

Classification of Emotional States Using EEG Signals and Wavelet Packet Transform Features

Affiliations

Classification of Emotional States Using EEG Signals and Wavelet Packet Transform Features

Himanshu Kumar et al. Stud Health Technol Inform. .

Abstract

In this work, an attempt has been made to classify arousal and valence states of emotion using time-domain features extracted from the Wavelet Packet Transform. For this, Electroencephalogram (EEG) signals from the publicly available DEAP database are considered. EEG signals are first decomposed using wavelet packet decomposition into θ, α, β, and γ bands. Then featural, namely band energy, sub-band energy ratio, root mean of energy, and information entropy of band energy is estimated. These features are fed into various machine learning classifiers such as support vector machines, linear discriminant analysis, K-nearest neighbor, and random forest. Results indicate that features extracted from wavelet packet transform can predict the arousal and valence emotional states. It is also seen that Support Vector Machines perform the best for both arousal (f-m = 75.68%) and valence(f-m=57.53%). This method can be used for the recognition of emotional states for various clinical purposes in emotion-related psychological disorders like major depressive disorder.

Keywords: Electroencephalogram; Emotion; Wavelet Packet Transform.

PubMed Disclaimer

Similar articles

LinkOut - more resources