Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun;606(7914):522-526.
doi: 10.1038/s41586-022-04770-6. Epub 2022 May 25.

Fossil biomolecules reveal an avian metabolism in the ancestral dinosaur

Affiliations

Fossil biomolecules reveal an avian metabolism in the ancestral dinosaur

Jasmina Wiemann et al. Nature. 2022 Jun.

Abstract

Birds and mammals independently evolved the highest metabolic rates among living animals1. Their metabolism generates heat that enables active thermoregulation1, shaping the ecological niches they can occupy and their adaptability to environmental change2. The metabolic performance of birds, which exceeds that of mammals, is thought to have evolved along their stem lineage3-10. However, there is no proxy that enables the direct reconstruction of metabolic rates from fossils. Here we use in situ Raman and Fourier-transform infrared spectroscopy to quantify the in vivo accumulation of metabolic lipoxidation signals in modern and fossil amniote bones. We observe no correlation between atmospheric oxygen concentrations11 and metabolic rates. Inferred ancestral states reveal that the metabolic rates consistent with endothermy evolved independently in mammals and plesiosaurs, and are ancestral to ornithodirans, with increasing rates along the avian lineage. High metabolic rates were acquired in pterosaurs, ornithischians, sauropods and theropods well before the advent of energetically costly adaptations, such as flight in birds. Although they had higher metabolic rates ancestrally, ornithischians reduced their metabolic abilities towards ectothermy. The physiological activities of such ectotherms were dependent on environmental and behavioural thermoregulation12, in contrast to the active lifestyles of endotherms1. Giant sauropods and theropods were not gigantothermic9,10, but true endotherms. Endothermy in many Late Cretaceous taxa, in addition to crown mammals and birds, suggests that attributes other than metabolism determined their fate during the terminal Cretaceous mass extinction.

PubMed Disclaimer

Comment in

Similar articles

Cited by

References

    1. Grigg, G. C., Beard, L. A. & Augee, M. L. The evolution of endothermy and its diversity in mammals and birds. Physiol. Biochem. Zool. 77, 982–997 (2004). - DOI - PubMed
    1. Rolland, J. et al. The impact of endothermy on the climatic niche evolution and the distribution of vertebrate diversity. Nat. Ecol. Evol. 2, 459–464 (2018). - DOI - PubMed
    1. Bakker, R. T. Anatomical and ecological evidence of endothermy in dinosaurs. Nature 238, 81–85 (1972). - DOI
    1. Köhler, M., Marín-Moratalla, N., Jordana, X. & Aanes, R. Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology. Nature 487, 358–361 (2012). - DOI - PubMed
    1. Legendre, L. J., Guénard, G., Botha-Brink, J. & Cubo, J. Palaeohistological evidence for ancestral high metabolic rate in archosaurs. Syst. Biol. 65, 989–996 (2016). - DOI - PubMed

LinkOut - more resources