Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun 8;144(22):9775-9784.
doi: 10.1021/jacs.2c02270. Epub 2022 May 27.

Chirality-Controlled Supramolecular Donor-Acceptor Copolymerization with Distinct Energy Transfer Efficiency

Affiliations

Chirality-Controlled Supramolecular Donor-Acceptor Copolymerization with Distinct Energy Transfer Efficiency

Rui Liao et al. J Am Chem Soc. .

Abstract

Chirality delivers substantial value to the field of supramolecular polymers, not only serving as a probe to monitor the dynamic assembly process but providing access to chiroptical materials. The current study demonstrates that, for supramolecular donor-acceptor copolymers, their comonomer organization modes can be greatly influenced by stereocommunication at the molecular level. The enantiopure N-[(1R or 1S)-phenylethyl]benzamides are incorporated into two structurally similar comonomers, locating between the π-aromatic diethynylacene core and the alkyl chain peripheries. Parallel arrangement of the stereogenic methyl units brings steric hindrance between the homochiral comonomers, which is relieved for the heterochiral comonomers due to the adoption of staggered arrangement. It consequently steers randomly mixed organization for the homochiral supramolecular copolymers within the nanofibers. In comparison, the heterochiral counterparts form nanoparticles in an alternate donor-acceptor organization manner. The variation of comonomer arrangement modes gives rise to distinct energy transfer efficiency at the supramolecular level. Overall, the elaborate manipulation of stereogenic centers in the comonomer structures exerts significant impacts on the characteristics of supramolecular copolymers, which could be useful for chiral sensing, recognition, and optoelectronic applications.

PubMed Disclaimer

LinkOut - more resources