A gain-of-function mutation in the ITPR1 gating domain causes male infertility in mice
- PMID: 35621185
- DOI: 10.1002/jcp.30783
A gain-of-function mutation in the ITPR1 gating domain causes male infertility in mice
Abstract
Inositol 1,4,5-trisphosphate receptor 1 (ITPR1) is an intracellular Ca2+ release channel critical for numerous cellular processes. Despite its ubiquitous physiological significance, ITPR1 mutations have thus far been linked to primarily movement disorders. Surprisingly, most disease-associated ITPR1 mutations generate a loss of function. This leaves our understanding of ITPR1-associated pathology oddly one-sided, as little is known about the pathological consequences of ITPR1 gain of function (GOF). To this end, we generated an ITPR1 gating domain mutation (D2594K) that substantially enhanced the inositol trisphosphate (IP3 )-sensitivity of ITPR1, and a mouse model expressing this ITPR1-D2594K+/- GOF mutation. We found that heterozygous ITPR1-D2594K+/- mutant mice exhibited male infertility, azoospermia, and acrosome loss. Furthermore, we functionally characterized a human ITPR1 variant V494I identified in the UK Biobank database as potentially associated with disorders of the testis. We found that the ITPR1-V494I variant significantly enhanced IP3 -induced Ca2+ release in HEK293 cells. Thus, ITPR1 hyperactivity may increase the risk of testicular dysfunction.
Keywords: acrosome; azoospermia; gain-of-function mutation; inositol 1,4,5-trisphosphate receptor; intracellular Ca2+ release; male infertility.
© 2022 Wiley Periodicals LLC.
Similar articles
-
Ligand sensitivity of type-1 inositol 1,4,5-trisphosphate receptor is enhanced by the D2594K mutation.Pflugers Arch. 2023 May;475(5):569-581. doi: 10.1007/s00424-023-02796-x. Epub 2023 Mar 7. Pflugers Arch. 2023. PMID: 36881190 Free PMC article.
-
Inositol 1,4,5-Trisphosphate Receptor 1 Gain-of-Function Increases the Risk for Cardiac Arrhythmias in Mice and Humans.Circulation. 2025 Mar 25;151(12):847-862. doi: 10.1161/CIRCULATIONAHA.124.070563. Epub 2024 Dec 10. Circulation. 2025. PMID: 39655431 Free PMC article.
-
A Gain-of-function Mutation in the Gating Domain of ITPR1 Impairs Motor Movement and Increases Thermal and Mechanical Sensitivity.Neuroscience. 2023 Jul 1;522:11-22. doi: 10.1016/j.neuroscience.2023.04.031. Epub 2023 May 8. Neuroscience. 2023. PMID: 37164302
-
Roles of inositol 1,4,5-trisphosphate receptors in spinocerebellar ataxias.Neurochem Int. 2016 Mar;94:1-8. doi: 10.1016/j.neuint.2016.01.007. Epub 2016 Jan 28. Neurochem Int. 2016. PMID: 26827887 Review.
-
Inositol 1,4,5-Trisphosphate Receptor Mutations Associated with Human Disease: Insights into Receptor Function and Dysfunction.Annu Rev Physiol. 2025 Feb;87(1):201-228. doi: 10.1146/annurev-physiol-022724-105627. Epub 2025 Feb 3. Annu Rev Physiol. 2025. PMID: 39591657 Review.
Cited by
-
Autophagy-related biomarkers in non-obstructive azoospermia: insights from transcriptomics and single-cell sequencing.J Assist Reprod Genet. 2025 Jun 30. doi: 10.1007/s10815-025-03559-6. Online ahead of print. J Assist Reprod Genet. 2025. PMID: 40587077
-
Comparative Transcriptomics Identify Key Pituitary Circular RNAs That Participate in Sheep (Ovis aries) Reproduction.Animals (Basel). 2023 Aug 25;13(17):2711. doi: 10.3390/ani13172711. Animals (Basel). 2023. PMID: 37684975 Free PMC article.
-
Missense mutations in inositol 1,4,5-trisphosphate receptor type 3 result in leaky Ca2+ channels and activation of store-operated Ca2+ entry.iScience. 2022 Nov 7;25(12):105523. doi: 10.1016/j.isci.2022.105523. eCollection 2022 Dec 22. iScience. 2022. PMID: 36444295 Free PMC article.
-
Ligand sensitivity of type-1 inositol 1,4,5-trisphosphate receptor is enhanced by the D2594K mutation.Pflugers Arch. 2023 May;475(5):569-581. doi: 10.1007/s00424-023-02796-x. Epub 2023 Mar 7. Pflugers Arch. 2023. PMID: 36881190 Free PMC article.
-
Inositol 1,4,5-Trisphosphate Receptor 1 Gain-of-Function Increases the Risk for Cardiac Arrhythmias in Mice and Humans.Circulation. 2025 Mar 25;151(12):847-862. doi: 10.1161/CIRCULATIONAHA.124.070563. Epub 2024 Dec 10. Circulation. 2025. PMID: 39655431 Free PMC article.
References
REFERENCES
-
- Abu-Omar, N., Das, J., Szeto, V., & Feng, Z. P. (2018). Neuronal ryanodine receptors in development and aging. Molecular Neurobiology, 55(2), 1183-1192. https://doi.org/10.1007/s12035-016-0375-4
-
- Berridge, M. J. (2009). Inositol trisphosphate and calcium signalling mechanisms. Biochimica et Biophysica Acta-Molecular Cell Research, 1793(6), 933-940. https://doi.org/10.1016/j.bbamcr.2008.10.005
-
- Berridge, M. J. (2016). The inositol trisphosphate/calcium signaling pathway in health and disease. Physiological Reviews, 96(4), 1261-1296. https://doi.org/10.1152/physrev.00006.2016
-
- Bezprozvanny, I. (2011). Role of inositol 1,4,5-trisphosphate receptors in pathogenesis of Huntington's disease and spinocerebellar ataxias. Neurochemical Research, 36(7), 1186-1197. https://doi.org/10.1007/s11064-010-0393-y
-
- Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L. T., Sharp, K., Motyer, A., Vukcevic, D., Delaneau, O., O'Connell, J., Cortes, A., Welsh, S., Young, A., Effingham, M., McVean, G., Leslie, S., Allen, N., Donnelly, P., & Marchini, J. (2018). The UK Biobank resource with deep phenotyping and genomic data. Nature, 562(7726), 203-209. https://doi.org/10.1038/s41586-018-0579-z
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Miscellaneous