Implementation of Artificial Intelligence in Diagnostic Practice as a Next Step after Going Digital: The UMC Utrecht Perspective
- PMID: 35626198
- PMCID: PMC9140005
- DOI: 10.3390/diagnostics12051042
Implementation of Artificial Intelligence in Diagnostic Practice as a Next Step after Going Digital: The UMC Utrecht Perspective
Abstract
Building on a growing number of pathology labs having a full digital infrastructure for pathology diagnostics, there is a growing interest in implementing artificial intelligence (AI) algorithms for diagnostic purposes. This article provides an overview of the current status of the digital pathology infrastructure at the University Medical Center Utrecht and our roadmap for implementing AI algorithms in the next few years.
Keywords: artificial intelligence; digital pathology; implementation; machine learning; roadmap.
Conflict of interest statement
The authors declare no conflict of interest.
Figures



References
-
- Bejnordi B.E., Veta M., Van Diest P.J., van Ginneken B., Karssemeijer N., Litjens G., van der Laak J.A.W.M., CAMELYON16 Consortium Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA. 2017;318:2199–2210. doi: 10.1001/jama.2017.14585. - DOI - PMC - PubMed
-
- Veta M., van Diest P.J., Willems S.M., Wang H., Madabhushi A., Cruz-Roa A., Gonzalez F., Larsen A.B.L., Vestergaard J.S., Dahl A.B., et al. Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med. Image Anal. 2015;20:237–248. doi: 10.1016/j.media.2014.11.010. - DOI - PubMed
-
- Swiderska-Chadaj Z., Pinckaers H., van Rijthoven M., Balkenhol M., Melnikova M., Geessink O., Manson Q., Sherman M., Polonia A., Parry J., et al. Learning to detect lymphocytes in immunohistochemistry with deep learning. Med. Image Anal. 2019;58:101547. doi: 10.1016/j.media.2019.101547. - DOI - PubMed
Publication types
LinkOut - more resources
Full Text Sources