Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 May 20;23(10):5731.
doi: 10.3390/ijms23105731.

Combination Strategies Involving Immune Checkpoint Inhibitors and Tyrosine Kinase or BRAF Inhibitors in Aggressive Thyroid Cancer

Affiliations
Review

Combination Strategies Involving Immune Checkpoint Inhibitors and Tyrosine Kinase or BRAF Inhibitors in Aggressive Thyroid Cancer

Francesca Ragusa et al. Int J Mol Sci. .

Abstract

Thyroid cancer is the most common (~90%) type of endocrine-system tumor, accounting for 70% of the deaths from endocrine cancers. In the last years, the high-throughput genomics has been able to identify pathways/molecular targets involved in survival and tumor progression. Targeted therapy and immunotherapy individually have many limitations. Regarding the first one, although it greatly reduces the size of the cancer, clinical responses are generally transient and often lead to cancer relapse after initial treatment. For the second one, although it induces longer-lasting responses in cancer patients than targeted therapy, its response rate is lower. The individual limitations of these two different types of therapies can be overcome by combining them. Here, we discuss MAPK pathway inhibitors, i.e., BRAF and MEK inhibitors, combined with checkpoint inhibitors targeting PD-1, PD-L1, and CTLA-4. Several mutations make tumors resistant to treatments. Therefore, more studies are needed to investigate the patient's individual tumor mutation burden in order to overcome the problem of resistance to therapy and to develop new combination therapies.

Keywords: PD-1 inhibitors; PD-L1 inhibitors; immunotherapy; new checkpoint inhibitors; thyroid cancer; tyrosine kinase inhibitors.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Fagin J.A., Wells S.A., Jr. Biologic and Clinical Perspectives on Thyroid Cancer. N. Engl. J. Med. 2016;375:1054–1067. doi: 10.1056/NEJMra1501993. - DOI - PMC - PubMed
    1. Lim H., Devesa S.S., Sosa J.A., Check D., Kitahara C.M. Trends in Thyroid Cancer Incidence and Mortality in the United States, 1974–2013. JAMA. 2017;317:1338–1348. doi: 10.1001/jama.2017.2719. - DOI - PMC - PubMed
    1. Kilfoy B.A., Zheng T., Holford T.R., Han X., Ward M.H., Sjodin A., Zhang Y., Bai Y., Zhu C., Guo G.L., et al. International patterns and trends in thyroid cancer incidence, 1973-2002. Cancer Causes Control. 2009;20:525–531. doi: 10.1007/s10552-008-9260-4. - DOI - PMC - PubMed
    1. Chen A.Y., Jemal A., Ward E.M. Increasing incidence of differentiated thyroid cancer in the United States, 1988–2005. Cancer. 2009;115:3801–3807. doi: 10.1002/cncr.24416. - DOI - PubMed
    1. Carling T., Udelsman R. Thyroid cancer. Ann. Rev. Med. 2014;65:125–137. doi: 10.1146/annurev-med-061512-105739. - DOI - PubMed

MeSH terms

Substances