Microglia-Mediated Neuroinflammation: A Potential Target for the Treatment of Cardiovascular Diseases
- PMID: 35642214
- PMCID: PMC9148574
- DOI: 10.2147/JIR.S350109
Microglia-Mediated Neuroinflammation: A Potential Target for the Treatment of Cardiovascular Diseases
Abstract
Microglia are tissue-resident macrophages of the central nervous system (CNS). In the CNS, microglia play an important role in the monitoring and intervention of synaptic and neuron-level activities. Interventions targeting microglia have been shown to improve the prognosis of various neurological diseases. Recently, studies have observed the activation of microglia in different cardiovascular diseases. In addition, different approaches that regulate the activity of microglia have been shown to modulate the incidence and progression of cardiovascular diseases. The change in autonomic nervous system activity after neuroinflammation may be a potential intermediate link between microglia and cardiovascular diseases. Here, in this review, we will discuss recent updates on the regulatory role of microglia in hypertension, myocardial infarction and ischemia/reperfusion injury. We propose that microglia serve as neuroimmune modulators and potential targets for cardiovascular diseases.
Keywords: autonomic nervous system; central-peripheral crosstalk; neuroimmune; sympathetic nervous system.
© 2022 Wang et al.
Conflict of interest statement
The authors declare that they have no competing interests. References1.KapoorK, BhandareAM, FarnhamMMJ, et al. Alerted microglia and the sympathetic nervous system: a novel form of microglia in the development of hypertension. Respir Physiol Neurobiol. 2016;226:51–62. doi:10.1016/j.resp.2015.11.015266440792.BadoerE. Microglia: activation in acute and chronic inflammatory states and in response to cardiovascular dysfunction. Int J Biochem Cell Biol. 2010;42(10):1580–1585. doi:10.1016/j.biocel.2010.07.005206384853.SavchenkoVL, McKannaJA, NikonenkoIR, et al. Microglia and astrocytes in the adult rat brain: comparative immunocytochemical analysis demonstrates the efficacy of lipocortin 1 immunoreactivity. Neuroscience. 2000;96(1):195–203. doi:10.1016/S0306-4522(99)00538-2106834234.WolfSA, BoddekeHWGM, KettenmannH. Microglia in physiology and disease. Annu Rev Physiol. 2017;79(1):619–643. doi:10.1146/annurev-physiol-022516-034406279596205.LevickSP, MurrayDB, JanickiJS, et al. Sympathetic nervous system modulation of inflammation and remodeling in the hypertensive heart. Hypertension. 2010;55(2):270–276. doi:10.1161/HYPERTENSIONAHA.109.142042200481966.DengY, TanX, LiML, et al. Angiotensin-converting enzyme 2 in the rostral ventrolateral medulla regulates cholinergic signaling and cardiovascular and sympathetic responses in hypertensive rats. Neurosci Bull. 2019;35(1):67–78. doi:10.1007/s12264-018-0298-3303185627.YoungCN, DavissonRL. Angiotensin-II, the brain, and hypertension: an update. Hypertension. 2015;66(5):920–926. doi:10.1161/HYPERTENSIONAHA.115.03624263245088.WangM, LiS, ZhouX, et al. Increased inflammation promotes ventricular arrhythmia through aggravating left stellate ganglion remodeling in a canine ischemia model. Int J Cardiol. 2017;248:286–293. doi:10.1016/j.ijcard.2017.08.011288268009.WangY, JiangW, ChenH, et al. Sympathetic nervous system mediates cardiac remodeling after myocardial infarction in a circadian disruption model. Front Cardiovasc Med. 2021;8:668387. doi:10.3389/fcvm.2021.6683873384256610.CooteJH, ChauhanRA. The sympathetic innervation of the heart: important new insights. Auton Neurosci. 2016;199:17–23. doi:10.1016/j.autneu.2016.08.0142756899511.CronkJC, KipnisJ. Microglia – the brain’s busy bees. F1000Prime Rep. 2013;5. doi:10.12703/P5-5312.AjamiB, BennettJL, KriegerC, et al. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci. 2007;10(12):1538–1543. doi:10.1038/nn20141802609713.DubbelaarML, KrachtL, EggenBJL, et al. The kaleidoscope of microglial phenotypes. Front Immunol. 2018;9:1753. doi:10.3389/fimmu.2018.017533010858614.NimmerjahnA, KirchhoffF, HelmchenF. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308(5726):1314–1318. doi:10.1126/science.11106471583171715.von BernhardiR, HerediaF, SalgadoN, et al. Microglia function in the normal brain. Adv Exp Med Biol. 2016;949:67.2771468516.CherryJD, OlschowkaJA, BanionMO. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation. 2014;11(1):98. doi:10.1186/1742-2094-11-982488988617.Marin-TevaJL, DusartI, ColinC, et al. Microglia promote the death of developing Purkinje cells. Neuron. 2004;41(4):535–547. doi:10.1016/S0896-6273(04)00069-81498020318.RoumierA. Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse. J Neurosci. 2004;24(50):11421–11428. doi:10.1523/JNEUROSCI.2251-04.20041560194819.PaolicelliRC, BolascoG, PaganiF, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333(6048):1456–1458. doi:10.1126/science.12025292177836220.ButovskyO, TalpalarAE, Ben-YaakovK, et al. Activation of microglia by aggregated β-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-γ and IL-4 render them protective. Mol Cell Neurosci. 2005;29(3):381–393. doi:10.1016/j.mcn.2005.03.0051589052821.LambertsenKL, ClausenBH, BabcockAA, et al. Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J Neurosci. 2009;29(5):1319–1330. doi:10.1523/JNEUROSCI.5505-08.20091919387922.YamasakiR, LuH, ButovskyO, et al. Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med. 2014;211(8):1533–1549. doi:10.1084/jem.201324772500275223.AjamiB, BennettJL, KriegerC, et al. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci. 2011;14(9):1142–1149. doi:10.1038/nn.28872180453724.RansohoffRM. A polarizing question: do M1 and M2 microglia exist?Nat Neurosci. 2016;19(8):987–991. doi:10.1038/nn.43382745940525.MartinezFO, GordonS. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13. doi:10.12703/P6-132466929426.MasudaT, SankowskiR, StaszewskiO, et al. Microglia heterogeneity in the single-cell era. Cell Rep. 2020;30(5):1271–1281. doi:10.1016/j.celrep.2020.01.0103202344727.PrinzM, JungS, PrillerJ. Microglia biology: one century of evolving concepts. Cell. 2019;179(2):292–311. doi:10.1016/j.cell.2019.08.0533158507728.UtzSG, SeeP, MildenbergerW, et al. Early fate defines microglia and non-parenchymal brain macrophage development. Cell. 2020;181(3):557–573 e18. doi:10.1016/j.cell.2020.03.0213225948429.SegietA, SmykiewiczP, KwiatkowskiP, et al. Tumour necrosis factor and interleukin 10 in blood pressure regulation in spontaneously hypertensive and normotensive rats. Cytokine. 2019;113:185–194. doi:10.1016/j.cyto.2018.07.0033053978030.ShiP, Diez-FreireC, JunJY, et al. Brain microglial cytokines in neurogenic hypertension. Hypertension. 2010;56(2):297–303. doi:10.1161/HYPERTENSIONAHA.110.1504092054797231.WuKLH, ChanSHH, ChanJYH. Neuroinflammation and oxidative stress in rostral ventrolateral medulla contribute to neurogenic hypertension induced by systemic inflammation. J Neuroinflammation. 2012;9(1):212. doi:10.1186/1742-2094-9-2122295843832.ShenXZ, LiY, LiL, et al. Microglia participate in neurogenic regulation of hypertension. Hypertension. 2015;66(2):309–316. doi:10.1161/HYPERTENSIONAHA.115.053332605633933.SantistebanMM, AhmariN, CarvajalJM, et al. Involvement of bone marrow cells and neuroinflammation in hypertension. Circ Res. 2015;117(2):178–191. doi:10.1161/CIRCRESAHA.117.3058532596371534.TakesueK, KishiT, HirookaY, et al. Activation of microglia within paraventricular nucleus of hypothalamus is NOT involved in maintenance of established hypertension. J Cardiol. 2017;69(1):84–88. doi:10.1016/j.jjcc.2016.01.0042687475235.BardgettME, HolbeinWW, Herrera-RosalesM, et al. Ang II-salt hypertension depends on neuronal activity in the hypothalamic paraventricular nucleus but not on local actions of tumor necrosis factor-α. Hypertension. 2014;63(3):527–534. doi:10.1161/HYPERTENSIONAHA.113.024292432403736.KapoorK, BhandareAM, NedoboyPE, et al. Dynamic changes in the relationship of microglia to cardiovascular neurons in response to increases and decreases in blood pressure. Neuroscience. 2016;329:12–29. doi:10.1016/j.neuroscience.2016.04.0442715514737.BurckléC, BaderM. Prorenin and its ancient receptor. Hypertension. 2006;48(4):549–551.1694020938.XuQ, JensenDD, PengH, et al. The critical role of the central nervous system (pro)renin receptor in regulating systemic blood pressure. Pharmacol Ther. 2016;164:126–134. doi:10.1016/j.pharmthera.2016.04.0062711340939.McKinleyMJ, AllenAM, BurnsP, et al. Interaction of circulating hormones with the brain: the roles of the subfornical organ and the organum vasculosum of the lamina terminalis. Clin Exp Pharmacol Physiol Suppl. 1998;25(S1):S61–7. doi:10.1111/j.1440-1681.1998.tb02303.x980919540.OsbornJW, FinkGD, SvedAF, et al. Circulating angiotensin II and dietary salt: converging signals for neurogenic hypertension. Curr Hypertens Rep. 2007;9(3):228–235. doi:10.1007/s11906-007-0041-31751913041.CooperSG, TrivediDP, YamamotoR, et al. Increased (pro)renin receptor expression in the subfornical organ of hypertensive humans. Am J Physiol Heart Circ Physiol. 2018;314(4):H796–H804. doi:10.1152/ajpheart.00616.20172935147042.LiW, PengH, CaoT, et al. Brain-targeted (pro)renin receptor knockdown attenuates angiotensin II-dependent hypertension. Hypertension. 2012;59(6):1188–1194. doi:10.1161/HYPERTENSIONAHA.111.1901082252625543.ShiP, GrobeJL, DeslandFA, et al. Direct pro-inflammatory effects of prorenin on microglia. PLoS One. 2014;9(10):e92937–e92937. doi:10.1371/journal.pone.00929372530250244.RuchayaPJ, PatonJFR, MurphyD, et al. A cardiovascular role for fractalkine and its cognate receptor, Cx3cr1, in the rat nucleus of the solitary tract. Neuroscience. 2012;209:119–127. doi:10.1016/j.neuroscience.2012.02.0182238711345.HoCY, SunGC, TseJ, et al. CX3CR1-microglia mediates neuroinflammation and blood pressure regulation in the nucleus tractus solitarii of fructose-induced hypertensive rats. J Neuroinflammation. 2020;17(1):1784.46.MarceauF, LussierA, RegoliD, et al. Pharmacology of kinins - their relevance to tissue-injury and inflammation. Gen Pharmacol. 1983;14(2):209–229. doi:10.1016/0306-3623(83)90001-0613285347.SriramulaS, LazartiguesE. Kinin B1 receptor promotes neurogenic hypertension through activation of centrally mediated mechanisms. Hypertension. 2017;70(6):1122–1131. doi:10.1161/HYPERTENSIONAHA.117.097442903820148.MartinsDTO, FiorDR, NakaieCR, et al. Kinin receptors of the central-nervous-system of spontaneously hypertensive rats related to the pressor-response to bradykinin. Br J Pharmacol. 1991;103(4):1851–1856. doi:10.1111/j.1476-5381.1991.tb12341.x165514349.AlvarezAL, DelorenziA, SantajulianaD, et al. Central bradykininergic system in normotensive and hypertensive rats. Clin Sci. 1992;82(5):513–519. doi:10.1042/cs082051350.De Brito GariepyH, CarayonP, FerrariB, et al. Contribution of the central dopaminergic system in the anti-hypertensive effect of kinin B1 receptor antagonists in two rat models of hypertension. Neuropeptides. 2010;44(2):191–198. doi:10.1016/j.npep.2009.12.0112007479651.SriramulaS. Kinin B1 receptor: a target for neuroinflammation in hypertension. Pharmacol Res. 2020;155:104715. doi:10.1016/j.phrs.2020.1047153208723552.BaileyCC, DeVauxLB, FarzanM. The triggering receptor expressed on myeloid cells 2 binds apolipoprotein E. J Biol Chem. 2015;290(43):26033–26042. doi:10.1074/jbc.M115.6772862637489753.JiangT, TanL, ZhuX-C, et al. Upregulation of TREM2 ameliorates neuropathology and rescues spatial cognitive impairment in a transgenic mouse model of Alzheimer’s disease. Neuropsychopharmacology. 2014;39(13):2949–2962. doi:10.1038/npp.2014.1642504774654.JayTR, MillerCM, ChengPJ, et al. TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer’s disease mouse models. J Exp Med. 2015;212(3):287–295. doi:10.1084/jem.201423222573230555.XuX, DuL, JiangJ, et al. Microglial TREM2 mitigates inflammatory responses and neuronal apoptosis in angiotensin II-induced hypertension in middle-aged mice. Front Aging Neurosci. 2021;13:716917. doi:10.3389/fnagi.2021.7169173448968356.WeberMD, FrankMG, TraceyKJ, et al. Stress induces the danger-associated molecular pattern HMGB-1 in the hippocampus of male Sprague Dawley rats: a priming stimulus of microglia and the NLRP3 inflammasome. J Neurosci. 2015;35(1):316–324. doi:10.1523/JNEUROSCI.3561-14.20152556812457.ZhangST, HuL, JiangJ, et al. HMGB1/RAGE axis mediates stress-induced RVLM neuroinflammation in mice via impairing mitophagy flux in microglia. J Neuroinflammation. 2020;17(1). doi:10.1186/s12974-019-1673-358.LiY, ShenXZ, LiL, et al. Brain transforming growth factor-β resists hypertension via regulating microglial activation. Stroke. 2017;48(9):2557–2564. doi:10.1161/STROKEAHA.117.0173702869825759.JiangP, ZhangW-Y, LiH-D, et al. Stress and vitamin D: altered vitamin D metabolism in both the hippocampus and myocardium of chronic unpredictable mild stress exposed rats. Psychoneuroendocrinology. 2013;38(10):2091–2098. doi:10.1016/j.psyneuen.2013.03.0172360813760.CuiC, XuP, LiG, et al. Vitamin D receptor activation regulates microglia polarization and oxidative stress in spontaneously hypertensive rats and angiotensin II-exposed microglial cells: role of renin-angiotensin system. Redox Biol. 2019;26:101295. doi:10.1016/j.redox.2019.1012953142141061.MassonGS, NairAR, DangeRB, et al. Toll-like receptor 4 promotes autonomic dysfunction, inflammation and microglia activation in the hypothalamic paraventricular nucleus: role of endoplasmic reticulum stress. PLoS One. 2015;10(3):e0122850. doi:10.1371/journal.pone.01228502581178862.LeeH, LeeS, ChoIH, et al. Toll-like receptors: sensor molecules for detecting damage to the nervous system. Curr Protein Pept Sci. 2013;14(1):33–42. doi:10.2174/13892037113140100062344190063.BiancardiVC, StranahanAM, KrauseEG, et al. Cross talk between AT 1 receptors and Toll-like receptor 4 in microglia contributes to angiotensin II-derived ROS production in the hypothalamic paraventricular nucleus. Am J Physiol Heart Circ Physiol. 2016;310(3):H404–H415. doi:10.1152/ajpheart.00247.20152663755664.MowryFE, PeadenSC, SternJE, et al. TLR4 and AT1R mediate blood-brain barrier disruption, neuroinflammation, and autonomic dysfunction in spontaneously hypertensive rats. Pharmacol Res. 2021;174:105877. doi:10.1016/j.phrs.2021.1058773461045265.LiJ, ZhaoF, WangY, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5(1):14. doi:10.1186/s40168-016-0222-x2814358766.YangT, SantistebanMM, RodriguezV, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65(6):1331–1340. doi:10.1161/HYPERTENSIONAHA.115.053152587019367.RichardsEM, LiJ, StevensBR, et al. Gut microbiome and neuroinflammation in hypertension. Circ Res. 2022;130(3):401–417. doi:10.1161/CIRCRESAHA.121.3198163511366468.SharmaRK, YangT, OliveiraAC, et al. Microglial cells impact gut microbiota and gut pathology in angiotensin II-induced hypertension. Circ Res. 2019;124(5):727–736. doi:10.1161/CIRCRESAHA.118.3138823061252769.RosaDD, DiasMMS, GrześkowiakŁM, et al. Milk kefir: nutritional, microbiological and health benefits. Nutr Res Rev. 2017;30(1):82–96. doi:10.1017/S09544224160002752822281470.FriquesAG, ArpiniCM, KalilIC, et al. Chronic administration of the probiotic kefir improves the endothelial function in spontaneously hypertensive rats. J Transl Med. 2015;13(1):1–16. doi:10.1186/s12967-015-0759-72559171171.de Almeida SilvaM, MowryFE, PeadenSC, et al. Kefir ameliorates hypertension via gut–brain mechanisms in spontaneously hypertensive rats. J Nutr Biochem. 2020;77:108318. doi:10.1016/j.jnutbio.2019.1083183192375572.MassonGS, NairAR, Silva SoaresPP, et al. Aerobic training normalizes autonomic dysfunction, HMGB1 content, microglia activation and inflammation in hypothalamic paraventricular nucleus of SHR. Am J Physiol Heart Circ Physiol. 2015;309(7):H1115–H1122. doi:10.1152/ajpheart.00349.20152625433273.KiviniemiAM, TulppoMP, EskelinenJJ, et al. Cardiac autonomic function and high-intensity interval training in middle-age men. Med Sci Sports Exerc. 2014;46(10):1960–1967. doi:10.1249/MSS.00000000000003072456181474.RanaI, StebbingM, KompaA, et al. Microglia activation in the hypothalamic PVN following myocardial infarction. Brain Res. 2010;1326:96–104. doi:10.1016/j.brainres.2010.02.0282015642475.FrancisJ, ChuY, JohnsonAK, et al. Acute myocardial infarction induces hypothalamic cytokine synthesis. Am J Physiol Heart Circ Physiol. 2004;286(6):H2264–71. doi:10.1152/ajpheart.01072.20031514805776.DworakM, StebbingM, KompaAR, et al. Attenuation of microglial and neuronal activation in the brain by ICV minocycline following myocardial infarction. Auton Neurosci. 2014;185:43–50. doi:10.1016/j.autneu.2014.03.0072479424877.DworakM, StebbingM, KompaAR, et al. Sustained activation of microglia in the hypothalamic PVN following myocardial infarction. Auton Neurosci. 2012;169(2):70–76. doi:10.1016/j.autneu.2012.04.0042259179378.BanfiC, FerrarioS, De VincentiO, et al. P2 receptors in human heart: upregulation of P2X6 in patients undergoing heart transplantation, interaction with TNFalpha and potential role in myocardial cell death. J Mol Cell Cardiol. 2005;39(6):929–939. doi:10.1016/j.yjmcc.2005.09.0021624214279.ZhouJ, TianG, QuanY, et al. Inhibition of P2X7 purinergic receptor ameliorates cardiac fibrosis by suppressing NLRP3/IL-1 β pathway. Oxid Med Cell Longev. 2020;2020:7956274. doi:10.1155/2020/79562743256610280.ZempoH, SugitaY, OgawaM, et al. A P2X7 receptor antagonist attenuates experimental autoimmune myocarditis via suppressed myocardial CD4+ T and macrophage infiltration and NADPH oxidase 2/4 expression in mice. Heart Vessels. 2015;30(4):527–533. doi:10.1007/s00380-014-0527-22487950581.DuD, JiangM, LiuM, et al. Microglial P2X(7) receptor in the hypothalamic paraventricular nuclei contributes to sympathoexcitatory responses in acute myocardial infarction rat. Neurosci Lett. 2015;587:22–28. doi:10.1016/j.neulet.2014.12.0262552440782.MiyakeY, IshikawaE, IshikawaT, et al. Self and nonself recognition through C-type lectin receptor, Mincle. Self Nonself. 2010;1(4):310–313. doi:10.4161/self.1.4.137362148750583.WangY, YinJ, WangC, et al. Microglial Mincle receptor in the PVN contributes to sympathetic hyperactivity in acute myocardial infarction rat. J Cell Mol Med. 2019;23(1):112–125. doi:10.1111/jcmm.138903035366084.WangY, HuH, YinJ, et al. TLR4 participates in sympathetic hyperactivity Post-MI in the PVN by regulating NF-kappaB pathway and ROS production. Redox Biol. 2019;24:101186. doi:10.1016/j.redox.2019.1011863097853985.TaguchiN, NakayamaS, TanakaM. Single administration of soluble epoxide hydrolase inhibitor suppresses neuroinflammation and improves neuronal damage after cardiac arrest in mice. Neurosci Res. 2016;111:56–63. doi:10.1016/j.neures.2016.05.0022718429586.FrickT, SpringeD, GrandgirardD, et al. An improved simple rat model for global cerebral ischaemia by induced cardiac arrest. Neurol Res. 2016;38(4):373–380. doi:10.1179/1743132815Y.00000000902634466487.YuanS, ZhangX, BoY, et al. The effects of electroacupuncture treatment on the postoperative cognitive function in aged rats with acute myocardial ischemia–reperfusion. Brain Res. 2014;1593:19–29. doi:10.1016/j.brainres.2014.10.0052544600788.GhanbariA, GhareghaniM, ZibaraK, et al. Light-emitting diode (LED) therapy improves occipital cortex damage by decreasing apoptosis and increasing BDNF-expressing cells in methanol-induced toxicity in rats. Biomed Pharmacother. 2017;89:1320–1330. doi:10.1016/j.biopha.2017.03.0242832009989.LeeHI, LeeS-W, KimNG, et al. Low‐level light emitting diode (LED) therapy suppresses inflammasome‐mediated brain damage in experimental ischemic stroke. J Biophoton. 2017;10(11):1502–1513. doi:10.1002/jbio.20160024490.WangS, LuoQ, ChenH, et al. Light emitting diode therapy protects against myocardial ischemia/reperfusion injury through mitigating neuroinflammation. Oxid Med Cell Longev. 2020;2020:9343160. doi:10.1155/2020/934316032963707
