Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul:320:111284.
doi: 10.1016/j.plantsci.2022.111284. Epub 2022 Apr 14.

AcCIPK5, a pineapple CBL-interacting protein kinase, confers salt, osmotic and cold stress tolerance in transgenic Arabidopsis

Affiliations

AcCIPK5, a pineapple CBL-interacting protein kinase, confers salt, osmotic and cold stress tolerance in transgenic Arabidopsis

Mohammad Aslam et al. Plant Sci. 2022 Jul.

Abstract

Plant-specific calcineurin B-like proteins (CBLs) and their interacting kinases, CBL-interacting protein kinases (CIPKs) module, are essential for dealing with various biotic and abiotic stress. The kinases (CIPKs) of this module have been well studied in several plants; however, the information about pineapple CIPKs remains limited. To understand how CIPKs function against environmental cues in pineapple, the CIPK5 gene of pineapple was cloned and characterized. The phylogenetic analyses revealed that AcCIPK5 is homologous to the CIPK12 of Arabidopsis and other plant species. Quantitative real-time PCR (qRT-PCR) analysis revealed that AcCIPK5 responds to multiple stresses, including osmotic, salt stress, heat and cold. Under optimal conditions, AcCIPK5 gets localized to the cytoplasm and cell membrane. The ectopic expression of AcCIPK5 in Arabidopsis improved the germination under osmotic and salt stress. Furthermore, AcCIPK5 positively regulated osmotic, drought, salt and cold tolerance and negatively regulated heat and fungal stress in Arabidopsis. Besides, the expression of AcCIPK impacted ABA-related genes and ROS homeostasis. Overall, the present study demonstrates that AcCIPK5 contributes to multiple stress tolerance and has the potential to be utilized in the development of stress-tolerant crops.

Keywords: Abscisic acid (ABA); Ananas comosus; CBL-CIPK; Heat stress; ROS; Salt stress.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources