Advances in data-independent acquisition mass spectrometry towards comprehensive digital proteome landscape
- PMID: 35645145
- DOI: 10.1002/mas.21781
Advances in data-independent acquisition mass spectrometry towards comprehensive digital proteome landscape
Abstract
The data-independent acquisition mass spectrometry (DIA-MS) has rapidly evolved as a powerful alternative for highly reproducible proteome profiling with a unique strength of generating permanent digital maps for retrospective analysis of biological systems. Recent advancements in data analysis software tools for the complex DIA-MS/MS spectra coupled to fast MS scanning speed and high mass accuracy have greatly expanded the sensitivity and coverage of DIA-based proteomics profiling. Here, we review the evolution of the DIA-MS techniques, from earlier proof-of-principle of parallel fragmentation of all-ions or ions in selected m/z range, the sequential window acquisition of all theoretical mass spectra (SWATH-MS) to latest innovations, recent development in computation algorithms for data informatics, and auxiliary tools and advanced instrumentation to enhance the performance of DIA-MS. We further summarize recent applications of DIA-MS and experimentally-derived as well as in silico spectra library resources for large-scale profiling to facilitate biomarker discovery and drug development in human diseases with emphasis on the proteomic profiling coverage. Toward next-generation DIA-MS for clinical proteomics, we outline the challenges in processing multi-dimensional DIA data set and large-scale clinical proteomics, and continuing need in higher profiling coverage and sensitivity.
Keywords: data-independent acquisition (DIA); mass spectrometry; proteomics.
© 2022 The Authors. Mass Spectrometry Reviews published by John Wiley & Sons Ltd.
Similar articles
-
Acquisition and Analysis of DIA-Based Proteomic Data: A Comprehensive Survey in 2023.Mol Cell Proteomics. 2024 Feb;23(2):100712. doi: 10.1016/j.mcpro.2024.100712. Epub 2024 Jan 3. Mol Cell Proteomics. 2024. PMID: 38182042 Free PMC article. Review.
-
Optimization of Acquisition and Data-Processing Parameters for Improved Proteomic Quantification by Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectrometry.J Proteome Res. 2017 Feb 3;16(2):738-747. doi: 10.1021/acs.jproteome.6b00767. Epub 2017 Jan 3. J Proteome Res. 2017. PMID: 27995803
-
High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis.J Proteomics. 2018 Mar 1;174:9-16. doi: 10.1016/j.jprot.2017.12.014. Epub 2017 Dec 24. J Proteomics. 2018. PMID: 29278786
-
Data-independent acquisition mass spectrometry (DIA-MS) for proteomic applications in oncology.Mol Omics. 2021 Feb 1;17(1):29-42. doi: 10.1039/d0mo00072h. Epub 2020 Oct 9. Mol Omics. 2021. PMID: 33034323
-
Data-Independent Acquisition: A Milestone and Prospect in Clinical Mass Spectrometry-Based Proteomics.Mol Cell Proteomics. 2024 Aug;23(8):100800. doi: 10.1016/j.mcpro.2024.100800. Epub 2024 Jun 15. Mol Cell Proteomics. 2024. PMID: 38880244 Free PMC article. Review.
Cited by
-
Analysis and visualization of quantitative proteomics data using FragPipe-Analyst.bioRxiv [Preprint]. 2024 Mar 10:2024.03.05.583643. doi: 10.1101/2024.03.05.583643. bioRxiv. 2024. Update in: J Proteome Res. 2024 Oct 4;23(10):4303-4315. doi: 10.1021/acs.jproteome.4c00294. PMID: 38496650 Free PMC article. Updated. Preprint.
-
DIA-BERT: pre-trained end-to-end transformer models for enhanced DIA proteomics data analysis.Nat Commun. 2025 Apr 14;16(1):3530. doi: 10.1038/s41467-025-58866-4. Nat Commun. 2025. PMID: 40229248 Free PMC article.
-
Proteomic insights into SARS-CoV-2 infection mechanisms, diagnosis, therapies and prognostic monitoring methods.Front Immunol. 2022 Sep 20;13:923387. doi: 10.3389/fimmu.2022.923387. eCollection 2022. Front Immunol. 2022. PMID: 36203586 Free PMC article. Review.
-
Exposing the small protein load of bacterial life.FEMS Microbiol Rev. 2023 Nov 1;47(6):fuad063. doi: 10.1093/femsre/fuad063. FEMS Microbiol Rev. 2023. PMID: 38012116 Free PMC article. Review.
-
STAVER: a standardized benchmark dataset-based algorithm for effective variation reduction in large-scale DIA-MS data.Brief Bioinform. 2024 Sep 23;25(6):bbae553. doi: 10.1093/bib/bbae553. Brief Bioinform. 2024. PMID: 39504480 Free PMC article.
References
REFERENCES
-
- Adhikari, S., E. C. Nice, E. W. Deutsch, L. Lane, G. S. Omenn, S. R. Pennington, Y.-K. Paik, C. M. Overall, F. J. Corrales, I. M. Cristea, J. E. Van Eyk, M. Uhlén, C. Lindskog, D. W. Chan, A. Bairoch, J. C. Waddington, J. L. Justice, J. LaBaer, H. Rodriguez, F. He, M. Kostrzewa, P. Ping, R. L. Gundry, P. Stewart, S. Srivastava, F. C. S. Nogueira, G. B. Domont, Y. Vandenbrouck, M. P. Y. Lam, S. Wennersten, J. Antonio Vizcaino, M. Wilkins, J. M. Schwenk, E. Lundberg, N. Bandeira, G. Marko-Varga, S. T. Weintraub, C. Pineau, U. Kusebauch, R. L. Moritz, S. Beom Ahn, M. Palmblad, M. P. Snyder, R. Aebersold, M. S. Baker. 2020. A high-stringency blueprint of the human proteome. Nat Commun 11(1):5301.
-
- Aebersold, R., and M. Mann. 2016. Mass-spectrometric exploration of proteome structure and function. Nature 537 (7620):347-355.
-
- Amon, S., F. Meier-Abt, L. C. Gillet, S. Dimitrieva, A. P. A. Theocharides, M. G. Manz, and R. Aebersold. 2019. Sensitive quantitative proteomics of human hematopoietic stem and progenitor cells by data-independent acquisition mass spectrometry. Mol Cell Proteomics 18 (7):1454-1467.
-
- Anjo, S. I., C. Santa, and B. Manadas. 2017. SWATH-MS as a tool for biomarker discovery: from basic research to clinical applications. Proteomics 17 (3-4):1600278.
-
- Avtonomov, D., F. Yu, G. C. Teo, F. D. V. Leprevost, S. E. Haynes, H. Y. Chang, D. J. Geiszler, D. A. Polasky, and A. I. Nesvizhskii. 2021. Updates to FragPipe: from LC-MS data to protein identifications, quantification, and PTM localization in just a few clicks. ASMS Poster.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources