Optical Tweezers Microrheology: From the Basics to Advanced Techniques and Applications
- PMID: 35650960
- PMCID: PMC9163451
- DOI: 10.1021/acsmacrolett.8b00498
Optical Tweezers Microrheology: From the Basics to Advanced Techniques and Applications
Abstract
Over the past few decades, microrheology has emerged as a widely used technique to measure the mechanical properties of soft viscoelastic materials. Optical tweezers offer a powerful platform for performing microrheology measurements and can measure rheological properties at the level of single molecules out to near macroscopic scales. Unlike passive microrheology methods, which use diffusing microspheres to extract rheological properties, optical tweezers can probe the nonlinear viscoelastic response, and measure the space- and time-dependent rheological properties of heterogeneous, nonequilibrium materials. In this Viewpoint, I describe the basic principles underlying optical tweezers microrheology, the instrumentation and material requirements, and key applications to widely studied soft biological materials. I also describe several sophisticated approaches that include coupling optical tweezers to fluorescence microscopy and microfluidics. The described techniques can robustly characterize noncontinuum mechanics, nonlinear mechanical responses, strain-field heterogeneities, stress propagation, force relaxation dynamics, and time-dependent mechanics of active materials.
Conflict of interest statement
The author declares no competing financial interest.
Figures






Similar articles
-
Microrheology: From Video Microscopy to Optical Tweezers.Micromachines (Basel). 2025 Aug 8;16(8):918. doi: 10.3390/mi16080918. Micromachines (Basel). 2025. PMID: 40872425 Free PMC article. Review.
-
Optical Tweezers Microrheology Maps the Dynamics of Strain-Induced Local Inhomogeneities in Entangled Polymers.Phys Rev Lett. 2019 Jul 19;123(3):038001. doi: 10.1103/PhysRevLett.123.038001. Phys Rev Lett. 2019. PMID: 31386434
-
Advances in the microrheology of complex fluids.Rep Prog Phys. 2016 Jul;79(7):074601. doi: 10.1088/0034-4885/79/7/074601. Epub 2016 Jun 1. Rep Prog Phys. 2016. PMID: 27245584
-
Temporal evolution of viscoelasticity of soft colloid laden air-water interface: a multiple mode microrheology study.RSC Adv. 2022 Apr 28;12(21):12988-12996. doi: 10.1039/d2ra00765g. eCollection 2022 Apr 28. RSC Adv. 2022. PMID: 35497011 Free PMC article.
-
Application of Microrheology in Food Science.Annu Rev Food Sci Technol. 2017 Feb 28;8:493-521. doi: 10.1146/annurev-food-030216-025859. Epub 2017 Jan 12. Annu Rev Food Sci Technol. 2017. PMID: 28125345 Review.
Cited by
-
Application of optical tweezers in cardiovascular research: More than just a measuring tool.Front Bioeng Biotechnol. 2022 Sep 6;10:947918. doi: 10.3389/fbioe.2022.947918. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 36147537 Free PMC article. Review.
-
Microrheology for biomaterial design.APL Bioeng. 2020 Dec 29;4(4):041508. doi: 10.1063/5.0013707. eCollection 2020 Dec. APL Bioeng. 2020. PMID: 33415310 Free PMC article. Review.
-
Scale-dependent interactions enable emergent microrheological stress response of actin-vimentin composites.Soft Matter. 2024 Nov 20;20(45):9007-9021. doi: 10.1039/d4sm00988f. Soft Matter. 2024. PMID: 39495192
-
Sequence-specific interactions determine viscoelasticity and aging dynamics of protein condensates.Nat Phys. 2024 Sep;20(9):1482-1491. doi: 10.1038/s41567-024-02558-1. Epub 2024 Jul 2. Nat Phys. 2024. PMID: 39464253 Free PMC article.
-
Determining Trap Compliances, Microsphere Size Variations, and Response Linearities in Single DNA Molecule Elasticity Measurements with Optical Tweezers.Front Mol Biosci. 2021 Mar 22;8:605102. doi: 10.3389/fmolb.2021.605102. eCollection 2021. Front Mol Biosci. 2021. PMID: 33829038 Free PMC article.
References
-
- Ashkin A Acceleration and Trapping of Particles by Radiation Pressure. Phys. Rev. Lett 1970, 24 (4), 156–159.
-
- Ashkin A; Dziedzic JM Optical Levitation by Radiation Pressure. Appl. Phys. Lett 1971, 19 (8), 283–285.
-
- Ashkin A; Dziedzic JM; Bjorkholm JE; Chu S Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles. Opt. Lett 1986, 11 (5), 288–290. - PubMed
-
- Bennink ML; Leuba SH; Leno GH; Zlatanova J; Grooth BG; de Greve J Unfolding Individual Nucleosomes by Stretching Single Chromatin Fibers with Optical Tweezers. Nat. Struct. Biol 2001, 8 (7), 606–610. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous