Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May 16:13:866758.
doi: 10.3389/fgene.2022.866758. eCollection 2022.

2b-RAD Genotyping of the Seagrass Cymodocea nodosa Along a Latitudinal Cline Identifies Candidate Genes for Environmental Adaptation

Affiliations

2b-RAD Genotyping of the Seagrass Cymodocea nodosa Along a Latitudinal Cline Identifies Candidate Genes for Environmental Adaptation

Miriam Ruocco et al. Front Genet. .

Abstract

Plant populations distributed along broad latitudinal gradients often show patterns of clinal variation in genotype and phenotype. Differences in photoperiod and temperature cues across latitudes influence major phenological events, such as timing of flowering or seed dormancy. Here, we used an array of 4,941 SNPs derived from 2b-RAD genotyping to characterize population differentiation and levels of genetic and genotypic diversity of three populations of the seagrass Cymodocea nodosa along a latitudinal gradient extending across the Atlantic-Mediterranean boundary (i.e., Gran Canaria-Canary Islands, Faro-Portugal, and Ebro Delta-Spain). Our main goal was to search for potential outlier loci that could underlie adaptive differentiation of populations across the latitudinal distribution of the species. We hypothesized that such polymorphisms could be related to variation in photoperiod-temperature regime occurring across latitudes. The three populations were clearly differentiated and exhibited diverse levels of clonality and genetic diversity. Cymodocea nodosa from the Mediterranean displayed the highest genotypic richness, while the Portuguese population had the highest clonality values. Gran Canaria exhibited the lowest genetic diversity (as observed heterozygosity). Nine SNPs were reliably identified as outliers across the three sites by two different methods (i.e., BayeScan and pcadapt), and three SNPs could be associated to specific protein-coding genes by screening available C. nodosa transcriptomes. Two SNPs-carrying contigs encoded for transcription factors, while the other one encoded for an enzyme specifically involved in the regulation of flowering time, namely Lysine-specific histone demethylase 1 homolog 2. When analyzing biological processes enriched within the whole dataset of outlier SNPs identified by at least one method, "regulation of transcription" and "signalling" were among the most represented. Our results highlight the fundamental importance signal integration and gene-regulatory networks, as well as epigenetic regulation via DNA (de)methylation, could have for enabling adaptation of seagrass populations along environmental gradients.

Keywords: 2b-RAD; SNPs; flowering; latitude; outlier loci; seagrass.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

FIGURE 1
FIGURE 1
Sampling scheme and environmental characteristics of the selected sites. (A) Sampling locations of C. nodosa: GC—Las Palmas de Gran Canaria (Lat: 27°N, Canary Islands); FA—Faro (Lat: 36°N, Portugal); EB—Ebro Delta (Lat: 40°N, Spain). (B) Annual patterns of photoperiod for the different sampling sites. Daylight hours were derived from annual data and averaged for every 15 days (https://www.timeanddate.com). (C) Long term monthly means of Sea Surface Temperature (SST) registered on the Atlantic and Mediterranean waters from NOAA derived from data for years 1971–2000 (https://psl.noaa.gov/data/gridded/data.noaa.ersst.v4.html).
FIGURE 2
FIGURE 2
Distribution of transitions and transversions in the SNPs dataset. Percentages (%) of transitions and transversions of the whole set of 7,562 SNPs identified for 63 individuals is depicted using an alluvial diagram.
FIGURE 3
FIGURE 3
Population structure analysis and clonal diversity. (A) Principal Component Analysis (PCA) displaying the three C. nodosa populations collected along a latitudinal gradient of distribution (i.e., Gran Canaria, Faro and Ebro). (B) Admixture plot of the C. nodosa populations at K = 4. (C) Number of distinct Multi Locus Lineages (MLLs) identified at each sampling site. (D) Weir and Cockerham FST weighted estimate between populations.
FIGURE 4
FIGURE 4
Functional annotation of 83 outlier loci displaying a positive match with transcribed regions. Functional annotation of SNPs with a positive blast hit against C. nodosa transcriptomes is depicted using a sunburst diagram. Each sequence has been assigned to a MapMan BIN category and sub-category based on its biological role or enzymatic activity. The definition of the BINs is included in the figure legend. A detailed description of BIN sub-categories can be retrieved from Supplementary Table S12.

Similar articles

Cited by

References

    1. Aitken S. N., Hannerz M. (2001). “Genecology and Gene Resource Management Strategies for Conifer Cold Hardiness,” in Conifer Cold Hardiness (Springer; ), 23–53. 10.1007/978-94-015-9650-3_2 - DOI
    1. Alberto F., Arnaud-Haond S., Duarte C., Serrão E. (2006). Genetic Diversity of a Clonal Angiosperm Near its Range Limit: the Case of Cymodocea Nodosa at the Canary Islands. Mar. Ecol. Prog. Ser. 309, 117–129. 10.3354/meps309117 - DOI
    1. Alberto F., Massa S., Manent P., Diaz-Almela E., Arnaud-Haond S., Duarte C. M., et al. (2008). Genetic Differentiation and Secondary Contact Zone in the seagrassCymodocea Nodosaacross the Mediterranean-Atlantic Transition Region. J. Biogeogr. 35, 1279–1294. 10.1111/j.1365-2699.2007.01876.x - DOI
    1. Alexander D. H., Lange K. (2011). Enhancements to the ADMIXTURE Algorithm for Individual Ancestry Estimation. BMC Bioinforma. 12, 246. 10.1186/1471-2105-12-246 - DOI
    1. Allendorf F. W. (2017). Genetics and the Conservation of Natural Populations: Allozymes to Genomes. Wiley Online Library.

LinkOut - more resources