Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun 2;18(1):212.
doi: 10.1186/s12917-022-03257-w.

Comparative profiling of agr locus, virulence, and biofilm-production genes of human and ovine non-aureus staphylococci

Affiliations

Comparative profiling of agr locus, virulence, and biofilm-production genes of human and ovine non-aureus staphylococci

Elisa Azara et al. BMC Vet Res. .

Abstract

Background: In a collaboration between animal and human health care professionals, we assessed the genetic characteristics shared by non-aureus staphylococci (NAS) infecting humans and dairy ewes to investigate their relatedness in a region concentrating half of the total National sheep stock. We examined by PCR 125 ovine and 70 human NAS for biofilm production, pyrogenic toxins, adhesins, autolysins genes, and accessory gene regulator (agr) locus. The microtiter plate assay (MPA) was used for the phenotypic screening of biofilm production. Ovine NAS included S. epidermidis, S. chromogenes, S. haemolyticus, S. simulans, S. caprae, S. warneri, S. saprophyticus, S. intermedius, and S. muscae. Human NAS included S. haemolyticus, S. epidermidis, S. hominis, S. lugdunensis, S. capitis, S. warneri, S. xylosus, S. pasteuri, and S. saprophyticus subsp. bovis.

Results: Phenotypically, 41 (32.8%) ovine and 24 (34.3%) human isolates were characterized as biofilm producers. Of the ovine isolates, 12 were classified as biofilm-producing while the remaining 29 as weak biofilm-producing. All 24 human isolates were considered weak biofilm-producing. Few S. epidermidis isolates harbored the icaA/D genes coding for the polysaccharide intercellular adhesin (PIA), while the bhp, aap, and embp genes coding biofilm accumulation proteins were present in both non-producing and biofilm-producing isolates. Fifty-nine sheep NAS (all S. epidermidis, 1 S. chromogenes, and 1 S. haemolyticus) and 27 human NAS (all S. epidermidis and 1 S. warneri) were positive for the agr locus: agr-3se (57.8%) followed by agr-1se (36.8%) predominated in sheep, while agr-1se (65.4%), followed by agr-2se (34.6%) predominated in humans. Concerning virulence genes, 40, 39.2, 47.2%, 52.8, 80 and 43.2% of the sheep isolates carried atlE, aae, sdrF, sdrG, eno and epbS respectively, against 37.1, 42.8, 32.8, 60, 100 and 100% of human isolates. Enterotoxins and tsst were not detected.

Conclusions: Considerable variation in biofilm formation ability was observed among NAS isolates from ovine and human samples. S. epidermidis was the best biofilm producer with the highest prevalence of adhesin-encoding genes.

Keywords: Adhesins; Biofilm; Human; Non-aureus staphylococci; Ovine; Quorum sensing; Toxins.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no conflicts of interest associated with this study.

References

    1. Marogna G, Rolesu S, Lollai S, Tola S, Leori G. Clinical findings in sheep farms affected by recurrent bacterial mastitis. Small Rumin Res. 2010;88:119–125. doi: 10.1016/j.smallrumres.2009.12.019. - DOI
    1. Onni T, Vidili A, Bandino E, Marogna G, Schianchi S, Tola S. Identification of coagulase-negative staphylococci isolated from caprine milk samples by PCR-RFLP of groEL gene. Small Rumin Res. 2012;104:185–190. doi: 10.1016/j.smallrumres.2011.10.004. - DOI
    1. Martins KB, Faccioli PY, Bonesso MF, Fernandes S, Oliveira AA, Dantas A, et al. Characteristics of resistance and virulence factors in different species of coagulase-negative staphylococci isolated from milk of healthy sheep and animals with subclinical mastitis. J Dairy Sci. 2017;100:2184–2195. doi: 10.3168/jds.2016-11583. - DOI - PubMed
    1. Vanderhaeghen W, Piepers S, Leroy F, Van Coillie E, Haesebrouck F, De Vliegher S. Identification, typing, ecology and epidemiology of coagulase negative staphylococci associated with ruminants. Vet J. 2015;203:44–51. doi: 10.1016/j.tvjl.2014.11.001. - DOI - PubMed
    1. Von Eiff C, Peters G, Heilmann C. Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis. 2002;2:677–685. doi: 10.1016/S1473-3099(02)00438-3. - DOI - PubMed