Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022:2526:107-122.
doi: 10.1007/978-1-0716-2469-2_8.

Quantitative Analysis for ROS-Producing Activity and Regulation of Plant NADPH Oxidases in HEK293T Cells

Affiliations

Quantitative Analysis for ROS-Producing Activity and Regulation of Plant NADPH Oxidases in HEK293T Cells

Sachie Kimura et al. Methods Mol Biol. 2022.

Abstract

Reactive oxygen species (ROS) produced by plant NADPH oxidases, respiratory burst oxidase homologs (RBOHs), play key roles in biotic and abiotic stress responses and development in plants. While properly controlled amounts of ROS function as signaling molecules, excessive accumulation of ROS can cause undesirable side effects due to their ability to oxidize DNA, lipids, and proteins. To limit the damaging consequences of unrestricted ROS accumulation, RBOH activity is tightly controlled by post-translational modifications (PTMs) and protein-protein interactions. In order to analyze these elaborate regulatory mechanisms, it is crucial to quantitatively assess the ROS-producing activity of RBOHs. Given the high endogenous ROS generation in plants, however, it can be challenging in plant cells to measure ROS production derived from specific RBOHs and to analyze the contribution of regulatory events for their activation and inactivation. Here we describe human embryonic kidney 293T (HEK293T) cells as a heterologous expression system and a useful tool to quantitatively monitor ROS production by RBOHs. This system permits the reconstitution of regulatory events to dissect the effects of Ca2+, phosphorylation, and protein-protein interactions on RBOH-dependent ROS production.

Keywords: Human embryonic kidney 293T (HEK293T); Luminol; NADPH oxidase; Respiratory oxidase homolog (RBOH).

PubMed Disclaimer

Similar articles

Cited by

References

    1. Waszczak C, Carmody M, Kangasjärvi J (2018) Reactive oxygen species in plant signaling. Annu Rev Plant Biol 69:209–236. https://doi.org/10.1146/annurev-arplant-042817-040322 - DOI - PubMed
    1. Kärkönen A, Kuchitsu K (2015) Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry 112:22–32. https://doi.org/10.1016/j.phytochem.2014.09.016 - DOI - PubMed
    1. Groom QJ, Torres MA, Fordham-Skelton AP et al (1996) rbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene. Plant J 10:515–522. https://doi.org/10.1046/j.1365-313X.1996.10030515.x - DOI - PubMed
    1. Keller T, Damude HG, Werner D et al (1998) A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10:255–266. https://doi.org/10.1105/tpc.10.2.255 - DOI - PubMed - PMC
    1. Suzuki N, Miller G, Morales J et al (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699. https://doi.org/10.1016/j.pbi.2011.07.014 - DOI - PubMed

LinkOut - more resources