Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug:348:148-157.
doi: 10.1016/j.jconrel.2022.05.052. Epub 2022 Jun 7.

A forskolin-loaded nanodelivery system prevents noise-induced hearing loss

Affiliations

A forskolin-loaded nanodelivery system prevents noise-induced hearing loss

Xiaogang An et al. J Control Release. 2022 Aug.

Abstract

Hearing loss is the most common sensory disorder worldwide and may result from age, drugs, or exposure to excessive noise. Crossing the blood-labyrinth barrier to achieve targeted drug delivery to the inner ear is key to the treatment of hearing loss. We designed a nanoparticle (NP)-based system for targeted drug delivery of forskolin (FSK) to the inner ear, driven by the prestin-targeting peptide LS19 ("ligand-receptor type interaction"). In vivo experiments in developing zebrafish embryos (4-96 h past fertilization) and mice confirmed that LS19-FSK specifically targeted and accumulated in zebrafish lateral line neuromasts and mouse outer hair cells (OHCs). LS19 peptide modification enabled LS19-FSK-NPs to rapidly target OHCs with high specificity. Furthermore, the multifunctional LS19-FSK-NPs were successfully delivered to the OHCs via the round window membrane route and exhibited slow-release properties. The sustained release and intracellular accumulation of FSK inhibited apoptosis of OHCs. Compared with LS19-NPs and FSK-NPs, LS19-FSK-NPs provided significantly stronger protection against noise-induced hearing damage, based on auditory brainstem responses at 4, 8, 16, and 32 kHz. Thus, our specially designed targeted nano-delivery system may serve as a basis for future clinical applications and treatment platforms and has the potential to significantly improve the treatment results of many inner ear diseases.

Keywords: Forskolin; Hair cells; Hearing loss; Nanoparticles; Noise exposure; Targeted delivery.

PubMed Disclaimer

Publication types

LinkOut - more resources