Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug:350:108854.
doi: 10.1016/j.mbs.2022.108854. Epub 2022 Jun 2.

Probabilistic predictions of SIS epidemics on networks based on population-level observations

Affiliations
Free article

Probabilistic predictions of SIS epidemics on networks based on population-level observations

T Zerenner et al. Math Biosci. 2022 Aug.
Free article

Abstract

We predict the future course of ongoing susceptible-infected-susceptible (SIS) epidemics on regular, Erdős-Rényi and Barabási-Albert networks. It is known that the contact network influences the spread of an epidemic within a population. Therefore, observations of an epidemic, in this case at the population-level, contain information about the underlying network. This information, in turn, is useful for predicting the future course of an ongoing epidemic. To exploit this in a prediction framework, the exact high-dimensional stochastic model of an SIS epidemic on a network is approximated by a lower-dimensional surrogate model. The surrogate model is based on a birth-and-death process; the effect of the underlying network is described by a parametric model for the birth rates. We demonstrate empirically that the surrogate model captures the intrinsic stochasticity of the epidemic once it reaches a point from which it will not die out. Bayesian parameter inference allows for uncertainty about the model parameters and the class of the underlying network to be incorporated directly into probabilistic predictions. An evaluation of a number of scenarios shows that in most cases the resulting prediction intervals adequately quantify the prediction uncertainty. As long as the population-level data is available over a long-enough period, even if not sampled frequently, the model leads to excellent predictions where the underlying network is correctly identified and prediction uncertainty mainly reflects the intrinsic stochasticity of the spreading epidemic. For predictions inferred from shorter observational periods, uncertainty about parameters and network class dominate prediction uncertainty. The proposed method relies on minimal data at population-level, which is always likely to be available. This, combined with its numerical efficiency, makes the proposed method attractive to be used either as a standalone inference and prediction scheme or in conjunction with other inference and/or predictive models.

Keywords: Bayesian inference; Birth-and-death processes; Epidemics; Network inference; Uncertainty quantification.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Publication types

LinkOut - more resources