Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep:258:119347.
doi: 10.1016/j.neuroimage.2022.119347. Epub 2022 May 31.

Group-level inference of information-based measures for the analyses of cognitive brain networks from neurophysiological data

Affiliations
Free article

Group-level inference of information-based measures for the analyses of cognitive brain networks from neurophysiological data

Etienne Combrisson et al. Neuroimage. 2022 Sep.
Free article

Abstract

The reproducibility crisis in neuroimaging and in particular in the case of underpowered studies has introduced doubts on our ability to reproduce, replicate and generalize findings. As a response, we have seen the emergence of suggested guidelines and principles for neuroscientists known as Good Scientific Practice for conducting more reliable research. Still, every study remains almost unique in its combination of analytical and statistical approaches. While it is understandable considering the diversity of designs and brain data recording, it also represents a striking point against reproducibility. Here, we propose a non-parametric permutation-based statistical framework, primarily designed for neurophysiological data, in order to perform group-level inferences on non-negative measures of information encompassing metrics from information-theory, machine-learning or measures of distances. The framework supports both fixed- and random-effect models to adapt to inter-individuals and inter-sessions variability. Using numerical simulations, we compared the accuracy in ground-truth retrieving of both group models, such as test- and cluster-wise corrections for multiple comparisons. We then reproduced and extended existing results using both spatially uniform MEG and non-uniform intracranial neurophysiological data. We showed how the framework can be used to extract stereotypical task- and behavior-related effects across the population covering scales from the local level of brain regions, inter-areal functional connectivity to measures summarizing network properties. We also present an open-source Python toolbox called Frites1 that includes the proposed statistical pipeline using information-theoretic metrics such as single-trial functional connectivity estimations for the extraction of cognitive brain networks. Taken together, we believe that this framework deserves careful attention as its robustness and flexibility could be the starting point toward the uniformization of statistical approaches.

Keywords: Cluster-based; Group-level statistics; Information-based measures; Neurophysiology; Non-parametric; Reproducibility; python.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that there is no conflict of interests regarding the publication of this paper.

Publication types

LinkOut - more resources