Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jan 19;5(1):73-77.
doi: 10.1021/acsmacrolett.5b00805. Epub 2015 Dec 21.

Synthesis of an End-to-End Protein-Glycopolymer Conjugate via Bio-Orthogonal Chemistry

Affiliations

Synthesis of an End-to-End Protein-Glycopolymer Conjugate via Bio-Orthogonal Chemistry

Hailong Zhang et al. ACS Macro Lett. .

Abstract

We report the synthesis of an end-to-end protein-glycopolymer conjugate, namely, site-specific modification of recombinant thrombomodulin at the C-terminus with a chain-end-functionalized glycopolymer. Thrombomodulin (TM) is an endothelial membrane glycoprotein that acts as a major cofactor in the protein C anticoagulant pathway. To closely mimic the glycoprotein structural feature of native TM, we proposed a site-specific glyco-engineering of recombinant TM with a glycopolymer. Briefly, recombinant TM containing the epidermal growth factor (EGF)-like domains 4, 5, and 6 (rTM456) and a C-terminal azidohomoalanine was modified with a dibenzylcyclooctyne (DBCO) chain-end-functionalized glycopolymer via copper-free click chemistry to afford the end-to-end TM-glycopolymer conjugate. The TM glycoconjugation was confirmed with SDS-PAGE, Western blot, and protein C activation assay, respectively. The reported site-specific end-to-end protein glycopolymer conjugation approach facilitates uniform glycoconjugate formation via biocompatible chemistry and in high efficiency providing a rational strategy for generating an rTM-based anticoagulant agent.

PubMed Disclaimer

LinkOut - more resources