Generative model-enhanced human motion prediction
- PMID: 35669063
- PMCID: PMC9159682
- DOI: 10.1002/ail2.63
Generative model-enhanced human motion prediction
Abstract
The task of predicting human motion is complicated by the natural heterogeneity and compositionality of actions, necessitating robustness to distributional shifts as far as out-of-distribution (OoD). Here, we formulate a new OoD benchmark based on the Human3.6M and Carnegie Mellon University (CMU) motion capture datasets, and introduce a hybrid framework for hardening discriminative architectures to OoD failure by augmenting them with a generative model. When applied to current state-of-the-art discriminative models, we show that the proposed approach improves OoD robustness without sacrificing in-distribution performance, and can theoretically facilitate model interpretability. We suggest human motion predictors ought to be constructed with OoD challenges in mind, and provide an extensible general framework for hardening diverse discriminative architectures to extreme distributional shift. The code is available at: https://github.com/bouracha/OoDMotion.
Keywords: deep learning; generative models; human motion prediction; variational autoencoders.
© 2022 The Authors. Applied AI Letters published by John Wiley & Sons Ltd.
Figures








References
-
- Geertsema EE, Thijs RD, Gutter T, et al. Automated video‐based detection of nocturnal convulsive seizures in a residential care setting. Epilepsia. 2018;59:53‐60. - PubMed
-
- Kakar M, Nyström H, Aarup LR, Nøttrup TJ, Olsen DR. Respiratory motion prediction by using the adaptive neuro fuzzy inference system (anfis). Phys Med Biol. 2005;50(19):4721‐4728. - PubMed
-
- Chang C‐Y, Lange B, Zhang M, et al. Towards pervasive physical rehabilitation using microsoft kinect. 2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops. IEEE; 2012:159‐162. https://ieeexplore.ieee.org/abstract/document/6240377
-
- Gui L‐Y, Zhang K, Wang Y‐X, Liang X, Moura JM, Veloso M. Teaching robots to predict human motion. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2018:562‐567. https://ieeexplore.ieee.org/abstract/document/8594452
LinkOut - more resources
Full Text Sources