Evolution of genetic mechanisms regulating cortical neurogenesis
- PMID: 35670518
- PMCID: PMC9543202
- DOI: 10.1002/dneu.22891
Evolution of genetic mechanisms regulating cortical neurogenesis
Abstract
The size of the cerebral cortex increases dramatically across amniotes, from reptiles to great apes. This is primarily due to different numbers of neurons and glial cells produced during embryonic development. The evolutionary expansion of cortical neurogenesis was linked to changes in neural stem and progenitor cells, which acquired increased capacity of self-amplification and neuron production. Evolution works via changes in the genome, and recent studies have identified a small number of new genes that emerged in the recent human and primate lineages, promoting cortical progenitor proliferation and increased neurogenesis. However, most of the mammalian genome corresponds to noncoding DNA that contains gene-regulatory elements, and recent evidence precisely points at changes in expression levels of conserved genes as key in the evolution of cortical neurogenesis. Here, we provide an overview of basic cellular mechanisms involved in cortical neurogenesis across amniotes, and discuss recent progress on genetic mechanisms that may have changed during evolution, including gene expression regulation, leading to the expansion of the cerebral cortex.
Keywords: OSVZ; cerebral cortex; enhancer; ferret; intermediate progenitor; radial glia.
© 2022 The Authors. Developmental Neurobiology published by Wiley Periodicals LLC.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





Similar articles
-
Evolution of Cortical Neurogenesis in Amniotes Controlled by Robo Signaling Levels.Cell. 2018 Jul 26;174(3):590-606.e21. doi: 10.1016/j.cell.2018.06.007. Epub 2018 Jun 28. Cell. 2018. PMID: 29961574 Free PMC article.
-
Molecular and cellular evolution of corticogenesis in amniotes.Cell Mol Life Sci. 2020 Apr;77(8):1435-1460. doi: 10.1007/s00018-019-03315-x. Epub 2019 Sep 28. Cell Mol Life Sci. 2020. PMID: 31563997 Free PMC article. Review.
-
A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex.Cereb Cortex. 2011 Jul;21(7):1674-94. doi: 10.1093/cercor/bhq238. Epub 2010 Dec 2. Cereb Cortex. 2011. PMID: 21127018
-
The regulation of cortical neurogenesis.Curr Top Dev Biol. 2021;142:1-66. doi: 10.1016/bs.ctdb.2020.10.003. Epub 2020 Dec 26. Curr Top Dev Biol. 2021. PMID: 33706916 Review.
-
Coevolution of radial glial cells and the cerebral cortex.Glia. 2015 Aug;63(8):1303-19. doi: 10.1002/glia.22827. Epub 2015 Mar 23. Glia. 2015. PMID: 25808466 Free PMC article. Review.
Cited by
-
Evolution of cortical neurons supporting human cognition.Trends Cogn Sci. 2022 Nov;26(11):909-922. doi: 10.1016/j.tics.2022.08.012. Epub 2022 Sep 15. Trends Cogn Sci. 2022. PMID: 36117080 Free PMC article. Review.
-
Indirect neurogenesis in space and time.Nat Rev Neurosci. 2024 Aug;25(8):519-534. doi: 10.1038/s41583-024-00833-x. Epub 2024 Jul 1. Nat Rev Neurosci. 2024. PMID: 38951687 Review.
-
Human neuronal maturation comes of age: cellular mechanisms and species differences.Nat Rev Neurosci. 2024 Jan;25(1):7-29. doi: 10.1038/s41583-023-00760-3. Epub 2023 Nov 23. Nat Rev Neurosci. 2024. PMID: 37996703 Review.
-
Human-specific genetic hallmarks in neocortical development: focus on neural progenitors.Curr Opin Genet Dev. 2024 Dec;89:102267. doi: 10.1016/j.gde.2024.102267. Epub 2024 Oct 8. Curr Opin Genet Dev. 2024. PMID: 39378630 Free PMC article. Review.
-
The growth factor EPIREGULIN promotes basal progenitor cell proliferation in the developing neocortex.EMBO J. 2024 Apr;43(8):1388-1419. doi: 10.1038/s44318-024-00068-7. Epub 2024 Mar 21. EMBO J. 2024. PMID: 38514807 Free PMC article.
References
-
- Amadei, G. , Zander, M. A. , Yang, G. , Dumelie, J. G. , Vessey, J. P. , Lipshitz, H. D. , Smibert, C. A. , Kaplan, D. R. , & Miller, F. D. (2015). A smaug2‐based translational repression complex determines the balance between precursor maintenance versus differentiation during mammalian neurogenesis. Journal of Neuroscience, 35, 15666–15681. 10.1523/JNEUROSCI.2172-15.2015 - DOI - PMC - PubMed
-
- Antonacci, F. , Dennis, M. Y. , Huddleston, J. , Sudmant, P. H. , Steinberg, K. M. , Rosenfeld, J. A. , Miroballo, M. , Graves, T. A. , Vives, L. , Malig, M. , Denman, L. , Raja, A. , Stuart, A. , Tang, J. , Munson, B. , Shaffer, L. G. , Amemiya, C. T. , Wilson, R. K. , & Eichler, E. E. (2014). Palindromic GOLGA8 core duplicons promote chromosome 15q13.3 microdeletion and evolutionary instability. Nature Genetics, 46, 1293–1302. 10.1038/ng.3120 - DOI - PMC - PubMed
-
- Arcila, M. L. , Betizeau, M. , Cambronne, X. A. , Guzman, E. , Doerflinger, N. , Bouhallier, F. , Zhou, H. , Wu, B. , Rani, N. , Bassett, D. S. , Borello, U. , Huissoud, C. , Goodman, R. H. , Dehay, C. , & Kosik, K. S. (2014). Novel primate miRNAs coevolved with ancient target genes in germinal zone‐specific expression patterns. Neuron, 81, 1255–1262. 10.1016/j.neuron.2014.01.017 - DOI - PMC - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources