Carbonic anhydrase IX proteoglycan-like and intracellular domains mediate pulmonary microvascular endothelial cell repair and angiogenesis
- PMID: 35672011
- PMCID: PMC9255709
- DOI: 10.1152/ajplung.00337.2021
Carbonic anhydrase IX proteoglycan-like and intracellular domains mediate pulmonary microvascular endothelial cell repair and angiogenesis
Abstract
The lungs of patients with acute respiratory distress syndrome (ARDS) have hyperpermeable capillaries that must undergo repair in an acidic microenvironment. Pulmonary microvascular endothelial cells (PMVECs) have an acid-resistant phenotype, in part due to carbonic anhydrase IX (CA IX). CA IX also facilitates PMVEC repair by promoting aerobic glycolysis, migration, and network formation. Molecular mechanisms of how CA IX performs such a wide range of functions are unknown. CA IX is composed of four domains known as the proteoglycan-like (PG), catalytic (CA), transmembrane (TM), and intracellular (IC) domains. We hypothesized that the PG and CA domains mediate PMVEC pH homeostasis and repair, and the IC domain regulates aerobic glycolysis and PI3k/Akt signaling. The functions of each CA IX domain were investigated using PMVEC cell lines that express either a full-length CA IX protein or a CA IX protein harboring a domain deletion. We found that the PG domain promotes intracellular pH homeostasis, migration, and network formation. The CA and IC domains mediate Akt activation but negatively regulate aerobic glycolysis. The IC domain also supports migration while inhibiting network formation. Finally, we show that exposure to acidosis suppresses aerobic glycolysis and migration, even though intracellular pH is maintained in PMVECs. Thus, we report that 1) the PG and IC domains mediate PMVEC migration and network formation, 2) the CA and IC domains support PI3K/Akt signaling, and 3) acidosis impairs PMVEC metabolism and migration independent of intracellular pH homeostasis.
Keywords: acidic microenvironment; acidosis; acute respiratory distress syndrome (ARDS); aerobic glycolysis; lung capillaries.
Conflict of interest statement
No conflicts of interest, financial or otherwise, are declared by the authors.
Figures
References
-
- Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A; Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342: 1301–1308, 2000. doi:10.1056/NEJM200005043421801. - DOI - PubMed
-
- Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA; NHLBI ARDS Network. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med 2: 611–620, 2014. doi:10.1016/S2213-2600(14)70097-9. - DOI - PMC - PubMed
-
- Islam D, Huang Y, Fanelli V, Delsedime L, Wu S, Khang J, Han B, Grassi A, Li M, Xu Y, Luo A, Wu J, Liu X, McKillop M, Medin J, Qiu H, Zhong N, Liu M, Laffey J, Li Y, Zhang H. Identification and modulation of microenvironment is crucial for effective mesenchymal stromal cell therapy in acute lung injury. Am J Respir Crit Care Med 199: 1214–1224, 2019. doi:10.1164/rccm.201802-0356OC. - DOI - PubMed
Publication types
MeSH terms
Substances
Associated data
Grants and funding
LinkOut - more resources
Full Text Sources
