Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun 8;14(648):eabf3136.
doi: 10.1126/scitranslmed.abf3136. Epub 2022 Jun 8.

Gene therapy targeting protein trafficking regulator MOG1 in mouse models of Brugada syndrome, arrhythmias, and mild cardiomyopathy

Affiliations

Gene therapy targeting protein trafficking regulator MOG1 in mouse models of Brugada syndrome, arrhythmias, and mild cardiomyopathy

Gang Yu et al. Sci Transl Med. .

Abstract

Brugada syndrome (BrS) is a fatal arrhythmia that causes an estimated 4% of all sudden death in high-incidence areas. SCN5A encodes cardiac sodium channel NaV1.5 and causes 25 to 30% of BrS cases. Here, we report generation of a knock-in (KI) mouse model of BrS (Scn5aG1746R/+). Heterozygous KI mice recapitulated some of the clinical features of BrS, including an ST segment abnormality (a prominent J wave) on electrocardiograms and development of spontaneous ventricular tachyarrhythmias (VTs), seizures, and sudden death. VTs were caused by shortened cardiac action potential duration and late phase 3 early afterdepolarizations associated with reduced sodium current density (INa) and increased Kcnd3 and Cacna1c expression. We developed a gene therapy using adeno-associated virus serotype 9 (AAV9) vector-mediated MOG1 delivery for up-regulation of MOG1, a chaperone that binds to NaV1.5 and traffics it to the cell surface. MOG1 was chosen for gene therapy because the large size of the SCN5A coding sequence (6048 base pairs) exceeds the packaging capacity of AAV vectors. AAV9-MOG1 gene therapy increased cell surface expression of NaV1.5 and ventricular INa, reversed up-regulation of Kcnd3 and Cacna1c expression, normalized cardiac action potential abnormalities, abolished J waves, and blocked VT in Scn5aG1746R/+ mice. Gene therapy also rescued the phenotypes of cardiac arrhythmias and contractile dysfunction in heterozygous humanized KI mice with SCN5A mutation p.D1275N. Using a small chaperone protein may have broad implications for targeting disease-causing genes exceeding the size capacity of AAV vectors.

PubMed Disclaimer

Comment in

  • Gene therapy for Brugada syndrome.
    Huynh K. Huynh K. Nat Rev Cardiol. 2022 Aug;19(8):504. doi: 10.1038/s41569-022-00744-3. Nat Rev Cardiol. 2022. PMID: 35764821 No abstract available.

Publication types

Substances

LinkOut - more resources