Compact light field photography towards versatile three-dimensional vision
- PMID: 35680933
- PMCID: PMC9184585
- DOI: 10.1038/s41467-022-31087-9
Compact light field photography towards versatile three-dimensional vision
Abstract
Inspired by natural living systems, modern cameras can attain three-dimensional vision via multi-view geometry like compound eyes in flies, or time-of-flight sensing like echolocation in bats. However, high-speed, accurate three-dimensional sensing capable of scaling over an extensive distance range and coping well with severe occlusions remains challenging. Here, we report compact light field photography for acquiring large-scale light fields with simple optics and a small number of sensors in arbitrary formats ranging from two-dimensional area to single-point detectors, culminating in a dense multi-view measurement with orders of magnitude lower dataload. We demonstrated compact light field photography for efficient multi-view acquisition of time-of-flight signals to enable snapshot three-dimensional imaging with an extended depth range and through severe scene occlusions. Moreover, we show how compact light field photography can exploit curved and disconnected surfaces for real-time non-line-of-sight 3D vision. Compact light field photography will broadly benefit high-speed 3D imaging and open up new avenues in various disciplines.
© 2022. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures




Similar articles
-
Trilobite-inspired neural nanophotonic light-field camera with extreme depth-of-field.Nat Commun. 2022 Apr 19;13(1):2130. doi: 10.1038/s41467-022-29568-y. Nat Commun. 2022. PMID: 35440101 Free PMC article.
-
Micro-optical artificial compound eyes.Bioinspir Biomim. 2006 Mar;1(1):R1-16. doi: 10.1088/1748-3182/1/1/R01. Epub 2006 Apr 6. Bioinspir Biomim. 2006. PMID: 17671298 Review.
-
Efficient reconstruction of all-in-focus images through shifted pinholes from multi-focus images for dense light field synthesis and rendering.IEEE Trans Image Process. 2013 Nov;22(11):4407-21. doi: 10.1109/TIP.2013.2273668. IEEE Trans Image Process. 2013. PMID: 24048015
-
Encrypted Three-dimensional Dynamic Imaging using Snapshot Time-of-flight Compressed Ultrafast Photography.Sci Rep. 2015 Oct 27;5:15504. doi: 10.1038/srep15504. Sci Rep. 2015. PMID: 26503834 Free PMC article.
-
Dielectric Metalens: Properties and Three-Dimensional Imaging Applications.Sensors (Basel). 2021 Jul 4;21(13):4584. doi: 10.3390/s21134584. Sensors (Basel). 2021. PMID: 34283117 Free PMC article. Review.
Cited by
-
Design of a Novel Microlens Array and Imaging System for Light Fields.Micromachines (Basel). 2024 Sep 21;15(9):1166. doi: 10.3390/mi15091166. Micromachines (Basel). 2024. PMID: 39337826 Free PMC article.
-
Advancements in fluorescence lifetime imaging microscopy Instrumentation: Towards high speed and 3D.Curr Opin Solid State Mater Sci. 2024 Jun;30:101147. doi: 10.1016/j.cossms.2024.101147. Epub 2024 Mar 18. Curr Opin Solid State Mater Sci. 2024. PMID: 39086551 Free PMC article.
-
Metaverse Wearables for Immersive Digital Healthcare: A Review.Adv Sci (Weinh). 2023 Nov;10(31):e2303234. doi: 10.1002/advs.202303234. Epub 2023 Sep 22. Adv Sci (Weinh). 2023. PMID: 37740417 Free PMC article. Review.
-
Light-field tomographic fluorescence lifetime imaging microscopy.Proc Natl Acad Sci U S A. 2024 Oct;121(40):e2402556121. doi: 10.1073/pnas.2402556121. Epub 2024 Sep 25. Proc Natl Acad Sci U S A. 2024. PMID: 39320920 Free PMC article.
-
Snapshot spectral imaging: from spatial-spectral mapping to metasurface-based imaging.Nanophotonics. 2024 Mar 22;13(8):1303-1330. doi: 10.1515/nanoph-2023-0867. eCollection 2024 Apr. Nanophotonics. 2024. PMID: 39679244 Free PMC article. Review.
References
-
- Yokoyama, A. 3D imaging sensing technology. In ACM SIGGRAPH 97 Visual Proceedings: the Art and Interdisciplinary Programs of SIGGRAPH ’97 (eds Pocock, L., Hopkins, R., Ebert, D. S. & Crow, J.) 114–115 (ACM, 1997).
-
- Faccio D, Velten A, Wetzstein G. Non-line-of-sight imaging. Nat. Rev. Phys. 2020;2:318–327. doi: 10.1038/s42254-020-0174-8. - DOI