Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May 31;14(11):2262.
doi: 10.3390/polym14112262.

Natural Rubber Blend Optimization via Data-Driven Modeling: The Implementation for Reverse Engineering

Affiliations

Natural Rubber Blend Optimization via Data-Driven Modeling: The Implementation for Reverse Engineering

Allen Jonathan Román et al. Polymers (Basel). .

Abstract

Natural rubber formulation methodologies implemented within industry primarily implicate a high dependence on the formulator's experience as it involves an educated guess-and-check process. The formulator must leverage their experience to ensure that the number of iterations to the final blend composition is minimized. The study presented in this paper includes the implementation of blend formulation methodology that targets material properties relevant to the application in which the product will be used by incorporating predictive models, including linear regression, response surface method (RSM), artificial neural networks (ANNs), and Gaussian process regression (GPR). Training of such models requires data, which is equal to financial resources in industry. To ensure minimum experimental effort, the dataset is kept small, and the model complexity is kept simple, and as a proof of concept, the predictive models are used to reverse engineer a current material used in the footwear industry based on target viscoelastic properties (relaxation behavior, tanδ, and hardness), which all depend on the amount of crosslinker, plasticizer, and the quantity of voids used to create the lightweight high-performance material. RSM, ANN, and GPR result in prediction accuracy of 90%, 97%, and 100%, respectively. It is evident that the testing accuracy increases with algorithm complexity; therefore, these methodologies provide a wide range of tools capable of predicting compound formulation based on specified target properties, and with a wide range of complexity.

Keywords: formulation; machine learning; modeling; natural rubber; optimization; response surface methodology; reverse engineering; viscoelasticity.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
A typical compression curve for a foamed elastomeric material where (I) is the initial region with larger tangent modulus, (II) is the buckling region with the reduced tangent modulus, and (III) is the densification zone.
Figure 2
Figure 2
(a) Lissajous curve of raw natural rubber, a nearly-linearly viscoelastic material, (b) Lissajous curve of standard athletic footwear material, a non-linearly viscoelastic material.
Figure 3
Figure 3
A comparison between a 10% and 30% strain test showcasing the low signal-to-noise ratio for the lower strain-level test.
Figure 4
Figure 4
This shows the raw relaxation curve which can be fit to a power function to quantify the long-term behavior under relaxation.
Figure 5
Figure 5
Depicts the workflow for the MATLAB program for quantifying the quantity of voids present within the sample.
Figure 6
Figure 6
Desirability functions for different goals and how weights influence their respective shapes. (a) Minimize the response, (b) Achieve target value, and (c) Maximize the response.
Figure 7
Figure 7
ANN basic architecture.
Figure 8
Figure 8
An illustration of GPR and how more data increases the predictive capabilities.
Figure 9
Figure 9
(a) μCT scan of a sample with 0% voids. (b) μCT scan of sample with 11.8% voids. (c) μCT scan of sample with 19% voids. (d) μCT scan of sample with 32.2% voids.
Figure 10
Figure 10
An overlay of relaxation tests of blend 1 at varying levels of void content mentioned in the text to the right of each curve.
Figure 11
Figure 11
Depiction of the linear relationship between max stress experienced in relaxation testing and void content for blend 1.
Figure 12
Figure 12
The relationship between voids and the rate at which stress decays for blend 9 (left) and 10 (right), characterized by nrelax.
Figure 13
Figure 13
The Pearson correlation coefficients for each parameter.
Figure 14
Figure 14
The increasing relationship of void content on tan δ.
Figure 15
Figure 15
The influence of void content on hardness.
Figure 16
Figure 16
(a) Depicts relaxation curves for blends 7, 8 and 9 while (b) represents the normalized curves.
Figure 17
Figure 17
(a) Depicts relaxation curves for blends 1 and 4 while (b) represents the normalized curve, showing a large similarity in regard to the stress decay behavior.
Figure 18
Figure 18
The influence of sulfur content and void content on tan δ for blends 7, 8 and 9.
Figure 19
Figure 19
The influence of sulfur content and void content on hardness.
Figure 20
Figure 20
The influence of paraffin oil content on relaxation behavior of NR blend with 1.5 pph of sulfur.
Figure 21
Figure 21
The influence of paraffin oil content on relaxation behavior of NR blend with 2.5 pph of sulfur.
Figure 22
Figure 22
The influence of paraffin oil content on σrelax of NR blend with 1.5 pph of sulfur.
Figure 23
Figure 23
The influence of paraffin oil content on σrelax of NR blend with 2.5 pph of sulfur.
Figure 24
Figure 24
Plot describing the similarity of unique blends by varying void content.
Figure 25
Figure 25
The influence of paraffin oil content on tanδ for a blend with 1.5 pph (a) and 2.5 pph of sulfur (b).
Figure 26
Figure 26
The influence of paraffin oil content on hardness.
Figure 27
Figure 27
The Pareto Chart of Standardized Effects for durometer reading.
Figure 28
Figure 28
The Pareto Chart of Standardized Effects for σrelax.
Figure 29
Figure 29
The Pareto Chart of Standardized Effects for nrelax.
Figure 30
Figure 30
The Pareto Chart of Standardized Effects for tanδ.
Figure 31
Figure 31
The curved response of sulfur content on nrelax, further confirming the results in the Pareto chart.
Figure 32
Figure 32
The parity plots for all four ANN models.
Figure 33
Figure 33
The results from the sensitivity analysis for both the linear regression baseline and the ANNs.
Figure 34
Figure 34
The parity plots describing Predicted vs. Experimental for GPR.

References

    1. Morton M. History of Synthetic Rubber. J. Macromol. Sci. Part A—Chem. 1981;15:1289–1302. doi: 10.1080/00222338108056786. - DOI
    1. Fisher J.C., Pry R.H. A simple substitution model of technological change. Technol. Forecast. Soc. Chang. 1971;3:75–88. doi: 10.1016/S0040-1625(71)80005-7. - DOI
    1. Ren X., Barrera C.S., Tardiff J.L., Gil A., Cornish K. Liquid guayule natural rubber, a renewable and crosslinkable processing aid in natural and synthetic rubber compounds. J. Clean. Prod. 2020;276:122933. doi: 10.1016/j.jclepro.2020.122933. - DOI
    1. Cornish K. Alternative Natural Rubber Crops: Why Should We Care? Technol. Innov. 2017;18:244–255. doi: 10.21300/18.4.2017.245. - DOI
    1. Poh G.K.X., Chew I.M.L., Tan J. Life Cycle Optimization for Synthetic Rubber Glove Manufacturing. Chem. Eng. Technol. 2019;42:1771–1779. doi: 10.1002/ceat.201800476. - DOI

LinkOut - more resources