Facile synthesis of amides via acceptorless dehydrogenative coupling of aryl epoxides and amines
- PMID: 35685791
- PMCID: PMC9132053
- DOI: 10.1039/d2sc01959k
Facile synthesis of amides via acceptorless dehydrogenative coupling of aryl epoxides and amines
Abstract
The synthesis of amides is significant in a wide variety of academic and industrial fields. We report here a new reaction, namely acceptorless dehydrogenative coupling of epoxides and amines to form amides catalyzed by ruthenium pincer complexes. Various aryl epoxides and amines smoothly convert into the desired amides in high yields with the generation of H2 gas as the only byproduct. Control experiments indicate that amides are generated kinetically faster than side products, possibly because of the facile activation of epoxides by metal-ligand cooperation, as supported by the observation of a ruthenium-enolate species. No alcohol or free aldehyde are involved. A mechanism is proposed involving a dual role of the catalyst, which is responsible for the high yield and selectivity of the new reaction.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures



Similar articles
-
Mechanistic insights into amide formation from aryl epoxides and amines catalyzed by ruthenium pincer complexes: a DFT study.Dalton Trans. 2023 Jun 20;52(24):8449-8455. doi: 10.1039/d3dt00726j. Dalton Trans. 2023. PMID: 37272656
-
Role of ancillary ligands in selectivity towards acceptorless dehydrogenation versus dehydrogenative coupling of alcohols and amines catalyzed by cationic ruthenium(II)-CNC pincer complexes.Dalton Trans. 2023 Nov 7;52(43):15878-15895. doi: 10.1039/d3dt03149g. Dalton Trans. 2023. PMID: 37830304
-
Metal-ligand cooperation by aromatization-dearomatization: a new paradigm in bond activation and "green" catalysis.Acc Chem Res. 2011 Aug 16;44(8):588-602. doi: 10.1021/ar2000265. Epub 2011 Jul 8. Acc Chem Res. 2011. PMID: 21739968
-
Synthesis of oxalamides by acceptorless dehydrogenative coupling of ethylene glycol and amines and the reverse hydrogenation catalyzed by ruthenium.Chem Sci. 2020 Jun 22;11(27):7188-7193. doi: 10.1039/d0sc02065f. Chem Sci. 2020. PMID: 34123004 Free PMC article.
-
Copper Catalyzed C-H Activation.Chem Rec. 2019 Jul;19(7):1302-1318. doi: 10.1002/tcr.201800107. Epub 2018 Oct 30. Chem Rec. 2019. PMID: 30375153 Review.
Cited by
-
Highly Enantiomerically Enriched Secondary Alcohols via Epoxide Hydrogenolysis.Organometallics. 2024 Jun 17;43(13):1490-1501. doi: 10.1021/acs.organomet.4c00214. eCollection 2024 Jul 8. Organometallics. 2024. PMID: 38993820 Free PMC article.
References
-
- The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Material Science, ed. A. Greenberg, C. M. Breneman and J. F. Liebman, Wiley, New York, 2000
- Humphrey J. M. Chamberlin A. R. Chem. Rev. 1997;97:2243–2266. doi: 10.1021/cr950005s. - DOI - PubMed
- Bray B. L. Nat. Rev. Drug Discovery. 2003;2:587–593. doi: 10.1038/nrd1133. - DOI - PubMed
- Clader J. W. J. Med. Chem. 2004;47:1–9. doi: 10.1021/jm030283g. - DOI - PubMed
- Dunetz J. R. Magano J. Weisenburger G. A. Org. Process Res. Dev. 2016;20:140–177. doi: 10.1021/op500305s. - DOI
-
-
For reviews, see:
- Han S.-Y. Kim Y.-A. Tetrahedron. 2004;60:2447–2467. doi: 10.1016/j.tet.2004.01.020. - DOI
- Montalbetti C. A. G. N. Falque V. Tetrahedron. 2005;61:10827–10852. doi: 10.1016/j.tet.2005.08.031. - DOI
- Valeur E. Bradley M. Chem. Soc. Rev. 2009;38:606–631. doi: 10.1039/B701677H. - DOI - PubMed
- Lanigan R. M. Sheppard T. D. Eur. J. Org. Chem. 2013;33:7453–7465. doi: 10.1002/ejoc.201300573. - DOI
-
-
-
For reviews, see:
- Allen C. L. Williams J. M. J. Chem. Soc. Rev. 2011;40:3405–3415. doi: 10.1039/C0CS00196A. - DOI - PubMed
- Pattabiraman V. R. Bode J. W. Nature. 2011;480:471–479. doi: 10.1038/nature10702. - DOI - PubMed
- Huang L. Arndt M. Goobβn K. Heydt H. Goobβn L. J. Chem. Rev. 2015;115:2596–2697. doi: 10.1021/cr300389u. - DOI - PubMed
- de Figueiredo R. M. Suppo J.-S. Campagne J.-M. Chem. Rev. 2016;116:12029–12122. doi: 10.1021/acs.chemrev.6b00237. - DOI - PubMed
-
-
-
For selective examples of catalytic synthesis of amides, see:
- Yoo W.-J. Li C.-J. J. Am. Chem. Soc. 2006;128:13064–13065. doi: 10.1021/ja064315b. - DOI - PubMed
- Gunanathan C. Ben-David Y. Milstein D. Science. 2007;317:790–792. doi: 10.1126/science.1145295. - DOI - PubMed
- Nakao Y. Idei H. Kanyiva K. S. Hiyama T. J. Am. Chem. Soc. 2009;131:5070–5071. doi: 10.1021/ja901153s. - DOI - PubMed
- Stephenson N. A. Zhu J. Gellman S. H. Stahl S. S. J. Am. Chem. Soc. 2009;131:10003–10008. doi: 10.1021/ja8094262. - DOI - PubMed
- Shen B. Makley D. M. Johnston J. N. Nature. 2010;465:1027–1032. doi: 10.1038/nature09125. - DOI - PMC - PubMed
- Gnanaprakasam B. Milstein D. J. Am. Chem. Soc. 2011;133:1682–1685. doi: 10.1021/ja109944n. - DOI - PubMed
- Fang X. Jackstell R. Beller M. Angew. Chem., Int. Ed. 2013;52:14089–14093. doi: 10.1002/anie.201308455. - DOI - PubMed
- Khusnutdinova J. R. Ben-David Y. Milstein D. J. Am. Chem. Soc. 2014;136:2998–3001. doi: 10.1021/ja500026m. - DOI - PubMed
-
-
- Nielsen L. P. C., Jacobsen E. N., Crotti P., Pineschi M., Olofsson B. and Somfai P., Aziridines and Epoxides in Organic Synthesis, ed. A. K. Yudin, Wiley-VCH, Weinheim, Germany, 2006, pp. 229–343
- Huang C.-Y. Doyle A. G. Chem. Rev. 2014;114:8153–8198. doi: 10.1021/cr500036t. - DOI - PubMed
- Jat J. L. Kumar G. Adv. Synth. Catal. 2019;361:4426–4441. doi: 10.1002/adsc.201900392. - DOI
- Hubbell A. K. Coates G. W. J. Org. Chem. 2020;85:13391–13414. doi: 10.1021/acs.joc.0c01691. - DOI - PubMed