Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Apr 26;13(20):5913-5919.
doi: 10.1039/d2sc01959k. eCollection 2022 May 25.

Facile synthesis of amides via acceptorless dehydrogenative coupling of aryl epoxides and amines

Affiliations

Facile synthesis of amides via acceptorless dehydrogenative coupling of aryl epoxides and amines

Yaoyu Liang et al. Chem Sci. .

Abstract

The synthesis of amides is significant in a wide variety of academic and industrial fields. We report here a new reaction, namely acceptorless dehydrogenative coupling of epoxides and amines to form amides catalyzed by ruthenium pincer complexes. Various aryl epoxides and amines smoothly convert into the desired amides in high yields with the generation of H2 gas as the only byproduct. Control experiments indicate that amides are generated kinetically faster than side products, possibly because of the facile activation of epoxides by metal-ligand cooperation, as supported by the observation of a ruthenium-enolate species. No alcohol or free aldehyde are involved. A mechanism is proposed involving a dual role of the catalyst, which is responsible for the high yield and selectivity of the new reaction.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Synthesis of amides from epoxides.
Fig. 1
Fig. 1. Mechanistic aspects of the reaction. (a) Investigation of the generation of byproducts 3a′ and 4, and the possibility of converting into 3a. (b) The correlation between reaction time and yields of 3a (standard conditions), 3a′ (without catalyst), and 4 (without amine). (c) Control experiments for excluding the participation of H2. (d) Control experiments for excluding the generation of free aldehyde. (e) The active catalytic species of amidation reaction. (f) Formation of Ru-enolate intermediates Ru-6 in the reaction. (g) Formation of Ru-8 and its reversible conversion into Ru-9.
Scheme 2
Scheme 2. Proposed mechanism.

Similar articles

Cited by

References

    1. The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Material Science, ed. A. Greenberg, C. M. Breneman and J. F. Liebman, Wiley, New York, 2000
    2. Humphrey J. M. Chamberlin A. R. Chem. Rev. 1997;97:2243–2266. doi: 10.1021/cr950005s. - DOI - PubMed
    3. Bray B. L. Nat. Rev. Drug Discovery. 2003;2:587–593. doi: 10.1038/nrd1133. - DOI - PubMed
    4. Clader J. W. J. Med. Chem. 2004;47:1–9. doi: 10.1021/jm030283g. - DOI - PubMed
    5. Dunetz J. R. Magano J. Weisenburger G. A. Org. Process Res. Dev. 2016;20:140–177. doi: 10.1021/op500305s. - DOI
    1. For reviews, see:

    2. Han S.-Y. Kim Y.-A. Tetrahedron. 2004;60:2447–2467. doi: 10.1016/j.tet.2004.01.020. - DOI
    3. Montalbetti C. A. G. N. Falque V. Tetrahedron. 2005;61:10827–10852. doi: 10.1016/j.tet.2005.08.031. - DOI
    4. Valeur E. Bradley M. Chem. Soc. Rev. 2009;38:606–631. doi: 10.1039/B701677H. - DOI - PubMed
    5. Lanigan R. M. Sheppard T. D. Eur. J. Org. Chem. 2013;33:7453–7465. doi: 10.1002/ejoc.201300573. - DOI
    1. For reviews, see:

    2. Allen C. L. Williams J. M. J. Chem. Soc. Rev. 2011;40:3405–3415. doi: 10.1039/C0CS00196A. - DOI - PubMed
    3. Pattabiraman V. R. Bode J. W. Nature. 2011;480:471–479. doi: 10.1038/nature10702. - DOI - PubMed
    4. Huang L. Arndt M. Goobβn K. Heydt H. Goobβn L. J. Chem. Rev. 2015;115:2596–2697. doi: 10.1021/cr300389u. - DOI - PubMed
    5. de Figueiredo R. M. Suppo J.-S. Campagne J.-M. Chem. Rev. 2016;116:12029–12122. doi: 10.1021/acs.chemrev.6b00237. - DOI - PubMed
    1. For selective examples of catalytic synthesis of amides, see:

    2. Yoo W.-J. Li C.-J. J. Am. Chem. Soc. 2006;128:13064–13065. doi: 10.1021/ja064315b. - DOI - PubMed
    3. Gunanathan C. Ben-David Y. Milstein D. Science. 2007;317:790–792. doi: 10.1126/science.1145295. - DOI - PubMed
    4. Nakao Y. Idei H. Kanyiva K. S. Hiyama T. J. Am. Chem. Soc. 2009;131:5070–5071. doi: 10.1021/ja901153s. - DOI - PubMed
    5. Stephenson N. A. Zhu J. Gellman S. H. Stahl S. S. J. Am. Chem. Soc. 2009;131:10003–10008. doi: 10.1021/ja8094262. - DOI - PubMed
    6. Shen B. Makley D. M. Johnston J. N. Nature. 2010;465:1027–1032. doi: 10.1038/nature09125. - DOI - PMC - PubMed
    7. Gnanaprakasam B. Milstein D. J. Am. Chem. Soc. 2011;133:1682–1685. doi: 10.1021/ja109944n. - DOI - PubMed
    8. Fang X. Jackstell R. Beller M. Angew. Chem., Int. Ed. 2013;52:14089–14093. doi: 10.1002/anie.201308455. - DOI - PubMed
    9. Khusnutdinova J. R. Ben-David Y. Milstein D. J. Am. Chem. Soc. 2014;136:2998–3001. doi: 10.1021/ja500026m. - DOI - PubMed
    1. Nielsen L. P. C., Jacobsen E. N., Crotti P., Pineschi M., Olofsson B. and Somfai P., Aziridines and Epoxides in Organic Synthesis, ed. A. K. Yudin, Wiley-VCH, Weinheim, Germany, 2006, pp. 229–343
    2. Huang C.-Y. Doyle A. G. Chem. Rev. 2014;114:8153–8198. doi: 10.1021/cr500036t. - DOI - PubMed
    3. Jat J. L. Kumar G. Adv. Synth. Catal. 2019;361:4426–4441. doi: 10.1002/adsc.201900392. - DOI
    4. Hubbell A. K. Coates G. W. J. Org. Chem. 2020;85:13391–13414. doi: 10.1021/acs.joc.0c01691. - DOI - PubMed