Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun 10;12(1):50.
doi: 10.1186/s13613-022-01025-5.

Dyspnea and the electromyographic activity of inspiratory muscles during weaning from mechanical ventilation

Affiliations

Dyspnea and the electromyographic activity of inspiratory muscles during weaning from mechanical ventilation

Côme Bureau et al. Ann Intensive Care. .

Abstract

Rationale: Dyspnea, a key symptom of acute respiratory failure, is not among the criteria for spontaneous breathing trial (SBT) failure. Here, we sought (1) to determine whether dyspnea is a reliable failure criterion for SBT failure; (2) to quantify the relationship between dyspnea and the respective electromyographic activity of the diaphragm (EMGdi), the parasternal (EMGpa) and the Alae nasi (EMGan).

Methods: Mechanically ventilated patients undergoing an SBT were included. Dyspnea intensity was measured by the Dyspnea-Visual Analogic Scale (Dyspnea-VAS) at the initiation and end of the SBT. During the 30-min SBT or until SBT failure, the EMGdi was continuously measured with a multi-electrode nasogastric catheter and the EMGan and EMGpa with surface electrodes.

Results: Thirty-one patients were included, SAPS 2 (median [interquartile range]) 53 (37‒74), mechanically ventilated for 6 (3‒10) days. Seventeen patients (45%) failed the SBT. The increase in Dyspnea-VAS along the SBT was higher in patients who failed (6 [4‒8] cm) than in those who passed (0 [0‒1] cm, p = 0.01). The area under the receiver operating characteristics curve for Dyspnea-VAS was 0.909 (0.786-1.032). The increase in Dyspnea-VAS was significantly correlated to the increase in EMGan (Rho = 0.42 [0.04‒0.70], p < 0.05), but not to the increase in EMGpa (Rho = - 0.121 [- 0.495 to - 0.290], p = 0.555) and EMGdi (Rho = - 0.26 [- 0.68 to 0.28], p = 0.289).

Conclusion: Dyspnea is a reliable criterion of SBT failure, suggesting that Dyspnea-VAS could be used as a monitoring tool of the SBT. In addition, dyspnea seems to be more closely related to the electromyographic activity of the Alae nasi than of the diaphragm.

Keywords: Clinical study; Dyspnea; Mechanical ventilation; Physiology.

PubMed Disclaimer

Conflict of interest statement

Dr. Alexandre Demoule reports personal fees from Medtronic, grants, personal fees and non-financial support from Philips, personal fees from Baxter, personal fees from Hamilton, personal fees and non-financial support from Fisher & Paykel, grants from the French Ministry of Health, personal fees from Getinge, grants and personal fees from Respinor, grants and non-financial support from Lungpacer, unrelated to the work submitted. Dr. Thomas Similowski reports, over the last 3 years, (1) personal fees from ADEP assistance, AstraZeneca France, Boehringer Ingelheim France, Chiesi France, Lungpacer Inc., Novartis France, and Vitalaire; and (2) as a member of the board of a research association, unrestricted grants from Covidien, Lungpacer, Maquet, and Philips, all unrelated to the present work. Dr. Similowski is listed as inventor on issued patents (WO2008006963A3, WO2012004534A1, WO2013164462A1) describing EEG responses to experimental and clinical dyspnea to identify and alleviate dyspnea in non-communicative patients. Dr. Côme Bureau reports personal fees from Meditor and Otsuka all unrelated to the present work. Dr. Martin Dres reports over the last three years personal fees from Lungpacer Inc., congress registration from Dräger and Research Contract with Bioserenity. Dr. Elise Morawiec, Dr. Julien Mayaux, Dr. Julie Delemazure have no competing interests related to this work.

Figures

Fig. 1
Fig. 1
Receiver operating characteristics curve of changes in Dyspnea-Visual Analog Scale (VAS), breathing pattern, blood gas and hemodynamics to detect spontaneous breathing trial failure. Change is expressed as the difference between value at the initiation and end of the spontaneous breathing trial. Dyspnea-VAS Dyspnea-Visual Analog Scale; SaO2 arterial saturation of oxygen
Fig. 2
Fig. 2
Correlation between the change of Dyspnea-Visual Analog Scale (VAS) and the change in electromyographic (EMG) activity of the Alae nasi, parasternal intercostal muscles and diaphragm between the initiation and end of the spontaneous breathing trial. Change in dyspnea-VAS is expressed as the difference between dyspnea-VAS at the initiation and end of the spontaneous breathing trial. The EMG activity is described by area under the curve (EMGauc) and maximum (EMGmax). Values are normalized to EMG activity at initiation of the SBT and are expressed as the ratio of the EMG activity at the end of the SBT to the EMG activity at the initiation of the SBT

References

    1. Boles JM, Bion J, Connors A, Herridge M, Marsh B, Melot C, et al. Weaning from mechanical ventilation. Eur Respir J. 2007;29(5):1033–1056. doi: 10.1183/09031936.00010206. - DOI - PubMed
    1. Vassilakopoulos T, Zakynthinos S, Roussos C. The tension-time index and the frequency/tidal volume ratio are the major pathophysiologic determinants of weaning failure and success. Am J Respir Crit Care Med. 1998;158(2):378–385. doi: 10.1164/ajrccm.158.2.9710084. - DOI - PubMed
    1. Tobin MJ. Extubation and the myth of “minimal ventilator settings”. Am J Respir Crit Care Med. 2012;185(4):349–350. doi: 10.1164/rccm.201201-0050ED. - DOI - PubMed
    1. Perren A, Brochard L. Managing the apparent and hidden difficulties of weaning from mechanical ventilation. Intensive Care Med. 2013;39(11):1885–1895. doi: 10.1007/s00134-013-3014-9. - DOI - PubMed
    1. Subirà C, Hernández G, Vázquez A, Rodríguez-García R, González-Castro A, García C, et al. Effect of pressure support vs t-piece ventilation strategies during spontaneous breathing trials on successful extubation among patients receiving mechanical ventilation: a randomized clinical trial. JAMA. 2019;321(22):2175–2182. doi: 10.1001/jama.2019.7234. - DOI - PMC - PubMed

LinkOut - more resources