Nano-enabled agriculture: How do nanoparticles cross barriers in plants?
- PMID: 35689377
- PMCID: PMC9700125
- DOI: 10.1016/j.xplc.2022.100346
Nano-enabled agriculture: How do nanoparticles cross barriers in plants?
Abstract
Nano-enabled agriculture is a topic of intense research interest. However, our knowledge of how nanoparticles enter plants, plant cells, and organelles is still insufficient. Here, we discuss the barriers that limit the efficient delivery of nanoparticles at the whole-plant and single-cell levels. Some commonly overlooked factors, such as light conditions and surface tension of applied nano-formulations, are discussed. Knowledge gaps regarding plant cell uptake of nanoparticles, such as the effect of electrochemical gradients across organelle membranes on nanoparticle delivery, are analyzed and discussed. The importance of controlling factors such as size, charge, stability, and dispersibility when properly designing nanomaterials for plants is outlined. We mainly focus on understanding how nanoparticles travel across barriers in plants and plant cells and the major factors that limit the efficient delivery of nanoparticles, promoting a better understanding of nanoparticle-plant interactions. We also provide suggestions on the design of nanomaterials for nano-enabled agriculture.
Keywords: barriers; cell membranes; cell wall; efficient delivery; electrochemical gradients; nanoparticles.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.
Figures




Similar articles
-
Critical Review: Role of Inorganic Nanoparticle Properties on Their Foliar Uptake and in Planta Translocation.Environ Sci Technol. 2021 Oct 19;55(20):13417-13431. doi: 10.1021/acs.est.1c00178. Epub 2021 May 14. Environ Sci Technol. 2021. PMID: 33988374 Review.
-
Nano-Biotechnology in Agriculture: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance.J Agric Food Chem. 2020 Feb 19;68(7):1935-1947. doi: 10.1021/acs.jafc.9b06615. Epub 2020 Feb 6. J Agric Food Chem. 2020. PMID: 32003987 Review.
-
Fluorescent labeling as a strategy to evaluate uptake and transport of polymeric nanoparticles in plants.Adv Colloid Interface Sci. 2022 Jul;305:102695. doi: 10.1016/j.cis.2022.102695. Epub 2022 May 13. Adv Colloid Interface Sci. 2022. PMID: 35598536 Review.
-
Unraveling the roles of modified nanomaterials in nano enabled agriculture.Plant Physiol Biochem. 2023 Sep;202:107944. doi: 10.1016/j.plaphy.2023.107944. Epub 2023 Aug 10. Plant Physiol Biochem. 2023. PMID: 37579682 Review.
-
Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants--Critical review.Nanotoxicology. 2016;10(3):257-78. doi: 10.3109/17435390.2015.1048326. Epub 2015 Jun 11. Nanotoxicology. 2016. PMID: 26067571 Review.
Cited by
-
Evaluation of the effect of nanoparticles on the cultivation of edible plants by ICP-MS: a review.Anal Bioanal Chem. 2024 May;416(11):2605-2623. doi: 10.1007/s00216-023-05076-w. Epub 2023 Dec 15. Anal Bioanal Chem. 2024. PMID: 38099967 Review.
-
Modification of Tomato Photosystem II Photochemistry with Engineered Zinc Oxide Nanorods.Plants (Basel). 2023 Oct 8;12(19):3502. doi: 10.3390/plants12193502. Plants (Basel). 2023. PMID: 37836242 Free PMC article.
-
Multilevel approach to plant-nanomaterial relationships: from cells to living ecosystems.J Exp Bot. 2023 Jun 27;74(12):3406-3424. doi: 10.1093/jxb/erad107. J Exp Bot. 2023. PMID: 36946676 Free PMC article.
-
Nanodelivery of nucleic acids for plant genetic engineering.Discov Nano. 2025 Feb 12;20(1):31. doi: 10.1186/s11671-025-04207-9. Discov Nano. 2025. PMID: 39937428 Free PMC article. Review.
-
Precise tracking of nanoparticles in plant roots.Nat Protoc. 2025 Jan;20(1):248-271. doi: 10.1038/s41596-024-01044-5. Epub 2024 Sep 5. Nat Protoc. 2025. PMID: 39237831
References
-
- Adisa I.O., Pullagurala V.L.R., Peralta-Videa J.R., Dimkpa C.O., Elmer W.H., Gardea-Torresdey J.L., White J.C. Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environ. Sci. Nano. 2019;6:2002–2030. doi: 10.1039/c9en00265k. - DOI
-
- Al-Amri N., Tombuloglu H., Slimani Y., Akhtar S., Barghouthi M., Almessiere M., Alshammari T., Baykal A., Sabit H., Ercan I., et al. Size effect of iron (III) oxide nanomaterials on the growth, and their uptake and translocation in common wheat (Triticum aestivum L.) Ecotoxicol. Environ. Saf. 2020;194:110377. - PubMed
-
- Albersheim P., Darvill A., Roberts K., Sederoff R., Staehelin A. Plant Cell Walls; 2011. Cell Walls and Plant Anatomy. Advance Access published 2011.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources