Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun 11;21(1):185.
doi: 10.1186/s12936-022-04160-3.

Incremental cost and cost-effectiveness of the addition of indoor residual spraying with pirimiphos-methyl in sub-Saharan Africa versus standard malaria control: results of data collection and analysis in the Next Generation Indoor Residual Sprays (NgenIRS) project, an economic-evaluation

Affiliations

Incremental cost and cost-effectiveness of the addition of indoor residual spraying with pirimiphos-methyl in sub-Saharan Africa versus standard malaria control: results of data collection and analysis in the Next Generation Indoor Residual Sprays (NgenIRS) project, an economic-evaluation

Joshua Yukich et al. Malar J. .

Abstract

Background: Malaria is a major cause of morbidity and mortality globally, especially in sub-Saharan Africa. Widespread resistance to pyrethroids threatens the gains achieved by vector control. To counter resistance to pyrethroids, third-generation indoor residual spraying (3GIRS) products have been developed. This study details the results of a multi-country cost and cost-effectiveness analysis of indoor residual spraying (IRS) programmes using Actellic®300CS, a 3GIRS product with pirimiphos-methyl, in sub-Saharan Africa in 2017 added to standard malaria control interventions including insecticide-treated bed nets versus standard malaria control interventions alone.

Methods: An economic evaluation of 3GIRS using Actellic®300CS in a broad range of sub-Saharan African settings was conducted using a variety of primary data collection and evidence synthesis methods. Four IRS programmes in Ghana, Mali, Uganda, and Zambia were included in the effectiveness analysis. Cost data come from six IRS programmes: one in each of the four countries where effect was measured plus Mozambique and a separate programme conducted by AngloGold Ashanti Malaria Control in Ghana. Financial and economic costs were quantified and valued. The main indicator for the cost was cost per person targeted. Country-specific case incidence rate ratios (IRRs), estimated by comparing IRS study districts to adjacent non-IRS study districts or facilities, were used to calculate cases averted in each study area. A deterministic analysis and sensitivity analysis were conducted in each of the four countries for which effectiveness evaluations were available. Probabilistic sensitivity analysis was used to generate plausibility bounds around the incremental cost-effectiveness ratio estimates for adding IRS to other standard interventions in each study setting as well as jointly utilizing data on effect and cost across all settings.

Results: Overall, IRRs from each country indicated that adding IRS with Actellic®300CS to the local standard intervention package was protective compared to the standard intervention package alone (IRR 0.67, [95% CI 0.50-0.91]). Results indicate that Actellic®300CS is expected to be a cost-effective (> 60% probability of being cost-effective in all settings) or highly cost-effective intervention across a range of transmission settings in sub-Saharan Africa.

Discussion: Variations in the incremental costs and cost-effectiveness likely result from several sources including: variation in the sprayed wall surfaces and house size relative to household population, the underlying malaria burden in the communities sprayed, the effectiveness of 3GIRS in different settings, and insecticide price. Programmes should be aware that current recommendations to rotate can mean variation and uncertainty in budgets; programmes should consider this in their insecticide-resistance management strategies.

Conclusions: The optimal combination of 3GIRS delivery with other malaria control interventions will be highly context specific. 3GIRS using Actellic®300CS is expected to deliver acceptable value for money in a broad range of sub-Saharan African malaria transmission settings.

Keywords: 3GIRS; Actellic®300CS; Cost; Cost-effectiveness; IRS; Indoor residual spraying; Malaria; NgenIRS; Pirimiphos-methyl; Vector control.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Meta-analysis of effect estimates of IRS versus no IRS from observational studies in NgenIRS countries. AIRS, Africa Indoor Residual Spraying Project; IRS, indoor residual spraying; NgenIRS, Next Generation Indoor Residual Sprays project; RE, random effects; FE, fixed effects
Fig. 2
Fig. 2
Contribution of line item expenses to total unit costs. AIRS, Africa Indoor Residual Spraying Project
Fig. 3
Fig. 3
Cost-effectiveness acceptability curves for DALYs averted using 3GIRS in Ghana, Mali, Uganda, and Zambia. Vertical lines represent alternative cost-effectiveness thresholds: green solid line = 0.5 * per capita gross domestic product (PCGDP); dotted and dashed blue line represents 1 * PCGDP, and red dotted line represents 3 * PCGDP. Cost-effectiveness acceptability curves are represented with black curves: solid black represents a baseline incidence set at the national average incidence based on World Malaria Report data, dashed black represents baseline incidence set using study specific comparator district/health facility catchment incidence. 3GIRS, third-generation indoor residual spray; DALY, disability-adjusted life year; PCGDP, per capita gross domestic product; USD, US dollars
Fig. 4
Fig. 4
Global probabilistic sensitivity analysis results showing incremental cost-effectiveness ratio estimates for varied levels of incidence. Black points represent individual simulation results. Horizontal lines represent alternative cost-effectiveness thresholds: green solid line = 0.5 * per capita gross domestic product (PCGDP); dotted and dashed blue line represents 1 * PCGDP, and red dotted line represents 3 * PCGDP. The grey curve represents median ICER estimates at varied baseline incidence using the base case assumption of case fatality rate and red line represents median ICER estimates assuming a case fatality rate 50% lower than base case scenarios. DALY, disability-adjusted life year; ICER, incremental cost-effectiveness ratio; PCGDP, per capita gross domestic product

References

    1. WHO . World malaria report 2019. Geneva: World Health Organization; 2019.
    1. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple KE, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–211. doi: 10.1038/nature15535. - DOI - PMC - PubMed
    1. Mabaso ML, Sharp B, Lengeler C. Historical review of malarial control in southern African with emphasis on the use of indoor residual house-spraying. Trop Med Int Health. 2004;9:846–856. doi: 10.1111/j.1365-3156.2004.01263.x. - DOI - PubMed
    1. Ranson H. Current and future prospects for preventing malaria transmission via the use of insecticides. Cold Spring Harb Perspect Med. 2017;7:a026823. doi: 10.1101/cshperspect.a026823. - DOI - PMC - PubMed
    1. WHO. Malaria threats map: visualizing biological challenges to malaria control and elimination. Geneva: World Health Organization; 2020. https://www.who.int/malaria/maps/threats-about/en/. Accessed 06 June 2020.