Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun 11;22(1):1167.
doi: 10.1186/s12889-022-13555-5.

Respiratory viruses dynamics and interactions: ten years of surveillance in central Europe

Collaborators, Affiliations

Respiratory viruses dynamics and interactions: ten years of surveillance in central Europe

Gibran Horemheb-Rubio et al. BMC Public Health. .

Abstract

Background: Lower respiratory tract infections are among the main causes of death. Although there are many respiratory viruses, diagnostic efforts are focused mainly on influenza. The Respiratory Viruses Network (RespVir) collects infection data, primarily from German university hospitals, for a high diversity of infections by respiratory pathogens. In this study, we computationally analysed a subset of the RespVir database, covering 217,150 samples tested for 17 different viral pathogens in the time span from 2010 to 2019.

Methods: We calculated the prevalence of 17 respiratory viruses, analysed their seasonality patterns using information-theoretic measures and agglomerative clustering, and analysed their propensity for dual infection using a new metric dubbed average coinfection exclusion score (ACES).

Results: After initial data pre-processing, we retained 206,814 samples, corresponding to 1,408,657 performed tests. We found that Influenza viruses were reported for almost the half of all infections and that they exhibited the highest degree of seasonality. Coinfections of viruses are frequent; the most prevalent coinfection was rhinovirus/bocavirus and most of the virus pairs had a positive ACES indicating a tendency to exclude each other regarding infection.

Conclusions: The analysis of respiratory viruses dynamics in monoinfection and coinfection contributes to the prevention, diagnostic, treatment, and development of new therapeutics. Data obtained from multiplex testing is fundamental for this analysis and should be prioritized over single pathogen testing.

Keywords: Coinfection; Respiratory viruses; Seasonality; Surveillance; Viral exclusion.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Distribution of RespVir Network. The figure shows a European map with the location of the 47 laboratory members of RespVir Network. These laboratories are located in the following countries: Germany, Austria, Switzerland, Netherlands, and Spain
Fig. 2
Fig. 2
Seasonality Profile of the Respiratory Viruses. The figure shows the seasonality profile of the 17 respiratory viruses studied. a) Degree of seasonality of each virus calculated by Kullback–Leibler divergence, where zero indicates no seasonality (see Methods, seasonality profile). b) Average linkage clustering of the 17 viruses according to their seasonality profile. c) The seasonal four groups according to the similarities of the 17 viruses, the figure shows the seasonal profile of one virus per group and the group name
Fig. 3
Fig. 3
Annual variation of seasonality. The figure shows the annual variation of seasonality and the biennial pattern discovered. a) Biennial pattern of HCoV-OC43 exhibiting high infection numbers at the end of even and beginning of odd years, but low infection numbers at the end of odd and beginning of even years. b) Hierarchical clustering with average linkage of the annual variation of seasonality of HCoV-OC43. c) Hierarchical clustering with average linkage of the annual variation of seasonality of FLUA(H3N2). d) Hierarchical clustering with average linkage of the annual variation of seasonality of FLUA(H1N1)
Fig. 4
Fig. 4
Interaction strength between the 17 virus pairs regarding coinfection. The figure shows the 17 studied viruses linked by lines. Orange lines indicate an exclusion interaction while green lines an affinity interaction. The thickness of the lines indicates the strength of the interaction

References

    1. World Health Organization. The top 10 causes of death. 2014. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed 30 Aug 2020.
    1. Nielsen J, Vestergaard LS, Richter L, Schmid D, Bustos N, Asikainen T, et al. European all-cause excess and influenza-attributable mortality in the 2017/18 season: should the burden of influenza B be reconsidered? Clin Microbiol Infect. 2019;25:1266–1276. doi: 10.1016/j.cmi.2019.02.011. - DOI - PubMed
    1. Paget J, Spreeuwenberg P, Charu V, Taylor RJ, Iuliano AD, Bresee J, Simonsen L, Viboud C. Global Seasonal Influenza-associated Mortality Collaborator Network and GLaMOR Collaborating Teams*. Global mortality associated with seasonal influenza epidemics: New burden estimates and predictors from the GLaMOR Project. J Glob Health. 2019;9(2):020421. 10.7189/jogh.09.020421. - PMC - PubMed
    1. Silke Buda, Viktoria Streib, Ute Preuß, Ralf Dürrwald, Barbara Biere JS, Udo Buchholz, Matthias an der Heiden WH, Aufgeführt. K 6 bis 9: DA einzelner B sind im jeweiligen A bzw. K. Bericht zur Epidemiologie der Influenza in Deutschland Saison 2018/19, Kap. 1 bis 5, 10. 2019. 10.25646/6232. - DOI
    1. Home - Clinical Virology. https://clinical-virology.net/en. Accessed 30 Aug 2020.

Publication types