Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Apr 18;13(19):5465-5504.
doi: 10.1039/d2sc00202g. eCollection 2022 May 18.

Photocatalytic C(sp3) radical generation via C-H, C-C, and C-X bond cleavage

Affiliations
Review

Photocatalytic C(sp3) radical generation via C-H, C-C, and C-X bond cleavage

Chia-Yu Huang et al. Chem Sci. .

Abstract

C(sp3) radicals (R˙) are of broad research interest and synthetic utility. This review collects some of the most recent advancements in photocatalytic R˙ generation and highlights representative examples in this field. Based on the key bond cleavages that generate R˙, these contributions are divided into C-H, C-C, and C-X bond cleavages. A general mechanistic scenario and key R˙-forming steps are presented and discussed in each section.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. General approaches toward R˙ formation.
Scheme 2
Scheme 2. Representative precursors for photocatalytic R˙ formation. [X], activating group.
Scheme 3
Scheme 3. HAT-enabled R˙ generation.
Scheme 4
Scheme 4. HAT with persulfate.
Scheme 5
Scheme 5. Benzoic acid derivatives as HAT agents.
Scheme 6
Scheme 6. Employing alcohols as HAT agents.
Scheme 7
Scheme 7. NHPI as HAT agent for C(sp3)–H oxygenation.
Scheme 8
Scheme 8. Phosphate as HAT agent.
Scheme 9
Scheme 9. Employing nitrate as HAT agents.
Scheme 10
Scheme 10. Ketone-catalysed C(sp3)–H fluorination.
Scheme 11
Scheme 11. Eosin Y-catalysed C(sp3) radical generation.
Scheme 12
Scheme 12. TBADT-catalysed C–H alkenylation of alkanes.
Scheme 13
Scheme 13. NCR-assisted remote C–H functionalisations.
Scheme 14
Scheme 14. Amine- and azide-catalysed α-C(sp3)–H functionalisations.
Scheme 15
Scheme 15. TAC-catalysed HAT under photoelectrochemistry conditions.
Scheme 16
Scheme 16. Thiyl radical-enabled C(sp3)–H elaborations.
Scheme 17
Scheme 17. Halogen radical-enabled C(sp3)–H activations.
Scheme 18
Scheme 18. Vinyl radical as HAT agent.
Scheme 19
Scheme 19. Trifluoromethyl radical-mediated C(sp3)–H arylation.
Scheme 20
Scheme 20. Methyl radical-mediated C(sp3)–H functionalisation.
Scheme 21
Scheme 21. Forming R˙ through C(sp3)–H oxidations.
Scheme 22
Scheme 22. Photocatalytic benzylic C(sp3)–H oxidation.
Scheme 23
Scheme 23. R˙ formation via carboxyl radical intermediates.
Scheme 24
Scheme 24. R˙ formation from acyl radical intermediates.
Scheme 25
Scheme 25. R˙ generation from alcohol and its derivatives.
Scheme 26
Scheme 26. R˙ formation via iminyl radical-induced ring-openings.
Scheme 27
Scheme 27. Generating R˙ from oxidative ring-opening of amide.
Scheme 28
Scheme 28. Radical addition to [1.1.1]propellane.
Scheme 29
Scheme 29. Aromatisation-induced R˙ extrusions.
Scheme 30
Scheme 30. Photocatalysed R˙ formation via radical addition to CC bonds.
Scheme 31
Scheme 31. Photocatalysed SET-induced CC cleavages.
Scheme 32
Scheme 32. R˙ generation via C–N cleavage of quaternary nitrogen salt.
Scheme 33
Scheme 33. Reductive CN π-bond cleavage of iminium salt.
Scheme 34
Scheme 34. Generating R˙ from aliphatic diazo compounds.
Scheme 35
Scheme 35. Photocatalytic deoxygenation of O-thiocarbamates.
Scheme 36
Scheme 36. R˙ generation via C–O cleavage of oxalates.
Scheme 37
Scheme 37. R˙ generation from peroxides.
Scheme 38
Scheme 38. Using masked alcohol for R˙ generation.
Scheme 39
Scheme 39. Direct hydrodeoxygenation of alcohols via R˙.
Scheme 40
Scheme 40. R˙ generation via carbonyl group reductions.
Scheme 41
Scheme 41. R˙ from sulfoniums, thiazoliniums, sulfinates and sulfinamides.
Scheme 42
Scheme 42. Photocatalytic R˙ generation via R–S homolysis.
Scheme 43
Scheme 43. Employing alkyl bromides as R˙ precursors.
Scheme 44
Scheme 44. R˙ formation from alkyl iodide.
Scheme 45
Scheme 45. Silyl radical-mediated XAT for R˙ generation.
Scheme 46
Scheme 46. Tertiary amine-mediated XAT for R˙ formation.
Scheme 47
Scheme 47. Common boron-based R˙ precursors.
Scheme 48
Scheme 48. Alkyl trifluoroborate as R˙ source.
Scheme 49
Scheme 49. R˙ formation via SH2 of alkyl boronic acid.
Scheme 50
Scheme 50. Oxidation of alkyl silane for R˙ formation.
Scheme 51
Scheme 51. Silicate-based reagents as R˙ precursors.

References

    1. Romero N. A. Nicewicz D. A. Chem. Rev. 2016;116:10075–10166. doi: 10.1021/acs.chemrev.6b00057. - DOI - PubMed
    1. Amos S. G. E. Garreau M. Buzzetti L. Waser J. Beilstein J. Org. Chem. 2020;16:1163–1187. doi: 10.3762/bjoc.16.103. - DOI - PMC - PubMed
    1. Bell J. D. Murphy J. A. Chem. Soc. Rev. 2021;90:9540–9685. doi: 10.1039/D1CS00311A. - DOI - PubMed
    1. Matsui J. K. Lang S. B. Heitz D. R. Molander G. A. ACS Catal. 2017;7:2563–2575. doi: 10.1021/acscatal.7b00094. - DOI - PMC - PubMed
    1. Zhu C. Yue H. Chu L. Rueping M. Chem. Sci. 2020;11:4051–4064. doi: 10.1039/D0SC00712A. - DOI - PMC - PubMed